Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2321510121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635633

RESUMO

Levels of lipopolysaccharide (LPS), an essential glycolipid on the surface of most gram-negative bacteria, are tightly controlled-making LPS synthesis a promising target for developing new antibiotics. Escherichia coli adaptor protein LapB (YciM) plays an important role in regulating LPS synthesis by promoting degradation of LpxC, a deacetylase that catalyzes the first committed step in LPS synthesis. Under conditions where LPS is abundant, LapB recruits LpxC to the AAA+ protease FtsH for degradation. LapB achieves this by simultaneously interacting with FtsH through its transmembrane helix and LpxC through its cytoplasmic domain. Here, we describe a cryo-EM structure of the complex formed between LpxC and the cytoplasmic domain of LapB (LapBcyto). The structure reveals how LapB exploits both its tetratricopeptide repeat (TPR) motifs and rubredoxin domain to interact with LpxC. Through both in vitro and in vivo analysis, we show that mutations at the LapBcyto/LpxC interface prevent LpxC degradation. Unexpectedly, binding to LapBcyto also inhibits the enzymatic activity of LpxC through allosteric effects reminiscent of LpxC activation by MurA in Pseudomonas aeruginosa. Our findings argue that LapB regulates LPS synthesis in two steps: In the first step, LapB inhibits the activity of LpxC, and in the second step, it commits LpxC to degradation by FtsH.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Mutação , Rubredoxinas/metabolismo , Amidoidrolases/metabolismo , Proteínas de Membrana/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(13): e2300054120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943885

RESUMO

The receptor tyrosine kinase KIT and its ligand stem cell factor (SCF) are required for the development of hematopoietic stem cells, germ cells, and other cells. A variety of human cancers, such as acute myeloid leukemia, gastrointestinal stromal tumor, and mast cell leukemia, are driven by somatic gain-of-function KIT mutations. Here, we report cryo electron microscopy (cryo-EM) structural analyses of full-length wild-type and two oncogenic KIT mutants, which show that the overall symmetric arrangement of the extracellular domain of ligand-occupied KIT dimers contains asymmetric D5 homotypic contacts juxtaposing the plasma membrane. Mutational analysis of KIT reveals in D5 region an "Achilles heel" for therapeutic intervention. A ligand-sensitized oncogenic KIT mutant exhibits a more comprehensive and stable D5 asymmetric conformation. A constitutively active ligand-independent oncogenic KIT mutant adopts a V-shaped conformation solely held by D5-mediated contacts. Binding of SCF to this mutant fully restores the conformation of wild-type KIT dimers, including the formation of salt bridges responsible for D4 homotypic contacts and other hallmarks of SCF-induced KIT dimerization. These experiments reveal an unexpected structural plasticity of oncogenic KIT mutants and a therapeutic target in D5.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-kit , Humanos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ligantes , Microscopia Crioeletrônica , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Fosforilação
3.
Plant J ; 117(4): 1069-1083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947285

RESUMO

The color of purple carrot taproots mainly depends on the anthocyanins sequestered in the vacuoles. Glutathione S-transferases (GSTs) are key enzymes involved in anthocyanin transport. However, the precise mechanism of anthocyanin transport from the cytosolic surface of the endoplasmic reticulum (ER) to the vacuoles in carrots remains unclear. In this study, we conducted a comprehensive analysis of the carrot genome, leading to the identification of a total of 41 DcGST genes. Among these, DcGST1 emerged as a prominent candidate, displaying a strong positive correlation with anthocyanin pigmentation in carrot taproots. It was highly expressed in the purple taproot tissues of purple carrot cultivars, while it was virtually inactive in the non-purple taproot tissues of purple and non-purple carrot cultivars. DcGST1, a homolog of Arabidopsis thaliana TRANSPARENT TESTA 19 (TT19), belongs to the GSTF clade and plays a crucial role in anthocyanin transport. Using the CRISPR/Cas9 system, we successfully knocked out DcGST1 in the solid purple carrot cultivar 'Deep Purple' ('DPP'), resulting in carrots with orange taproots. Additionally, DcMYB7, an anthocyanin activator, binds to the DcGST1 promoter, activating its expression. Compared with the expression DcMYB7 alone, co-expression of DcGST1 and DcMYB7 significantly increased anthocyanin accumulation in carrot calli. However, overexpression of DcGST1 in the two purple carrot cultivars did not change the anthocyanin accumulation pattern or significantly increase the anthocyanin content. These findings improve our understanding of anthocyanin transport mechanisms in plants, providing a molecular foundation for improving and enhancing carrot germplasm.


Assuntos
Antocianinas , Daucus carota , Antocianinas/metabolismo , Daucus carota/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética
4.
Proc Natl Acad Sci U S A ; 119(41): e2122099119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191206

RESUMO

Viruses pose a great threat to animal and plant health worldwide, with many being dependent on insect vectors for transmission between hosts. While the virus-host arms race has been well established, how viruses and insect vectors adapt to each other remains poorly understood. Begomoviruses comprise the largest genus of plant-infecting DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci. Here, we show that the vector Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway plays an important role in mediating the adaptation between the begomovirus tomato yellow leaf curl virus (TYLCV) and whiteflies. We found that the JAK/STAT pathway in B. tabaci functions as an antiviral mechanism against TYLCV infection in whiteflies as evidenced by the increase in viral DNA and coat protein (CP) levels after inhibiting JAK/STAT signaling. Two STAT-activated effector genes, BtCD109-2 and BtCD109-3, mediate this anti-TYLCV activity. To counteract this vector immunity, TYLCV has evolved strategies that impair the whitefly JAK/STAT pathway. Infection of TYLCV is associated with a reduction of JAK/STAT pathway activity in whiteflies. Moreover, TYLCV CP binds to STAT and blocks its nuclear translocation, thus, abrogating the STAT-dependent transactivation of target genes. We further show that inhibition of the whitefly JAK/STAT pathway facilitates TYLCV transmission but reduces whitefly survival and fecundity, indicating that this JAK/STAT-dependent TYLCV-whitefly interaction plays an important role in keeping a balance between whitefly fitness and TYLCV transmission. This study reveals a mechanism of plant virus-insect vector coadaptation in relation to vector survival and virus transmission.


Assuntos
Begomovirus , Hemípteros , Vírus de Plantas , Solanum lycopersicum , Animais , Antivirais , Begomovirus/genética , DNA Viral , Hemípteros/fisiologia , Janus Quinases/genética , Solanum lycopersicum/genética , Doenças das Plantas , Vírus de Plantas/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais
5.
J Virol ; 97(11): e0106723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855618

RESUMO

IMPORTANCE: Many plant viruses are transmitted by insect vectors in a circulative manner. For efficient transmission, the entry of the virus from vector hemolymph into the primary salivary gland (PSG) is a step of paramount importance. Yet, vector components mediating virus entry into PSG remain barely characterized. Here, we demonstrate the role of clathrin-mediated endocytosis and early endosomes in begomovirus entry into whitefly PSG. Our findings unravel the key components involved in begomovirus transport within the whitefly body and transmission by their whitefly vectors and provide novel clues for blocking begomovirus transmission.


Assuntos
Begomovirus , Endocitose , Hemípteros , Animais , Begomovirus/fisiologia , Clatrina/metabolismo , Endossomos , Hemípteros/metabolismo , Hemípteros/virologia , Doenças das Plantas , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
6.
J Exp Bot ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829390

RESUMO

The interactions of insect vector-virus-plant have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite, cotton leaf curl Multan betasatellite (CLCuMuB) enhance the performance of B. tabaci vector, and ßC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB ßC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in the wild type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB ßC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of the tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.

7.
Crit Care ; 28(1): 100, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539163

RESUMO

Sepsis is characterized by organ dysfunction resulting from a dysregulated inflammatory response triggered by infection, involving multifactorial and intricate molecular mechanisms. Hypoxia-inducible factor-1α (HIF-1α), a notable transcription factor, assumes a pivotal role in the onset and progression of sepsis. This review aims to furnish a comprehensive overview of HIF-1α's mechanism of action in sepsis, scrutinizing its involvement in inflammatory regulation, hypoxia adaptation, immune response, and organ dysfunction. The review encompasses an analysis of the structural features, regulatory activation, and downstream signaling pathways of HIF-1α, alongside its mechanism of action in the pathophysiological processes of sepsis. Furthermore, it will delve into the roles of HIF-1α in modulating the inflammatory response, including its association with inflammatory mediators, immune cell activation, and vasodilation. Additionally, attention will be directed toward the regulatory function of HIF-1α in hypoxic environments and its linkage with intracellular signaling, oxidative stress, and mitochondrial damage. Finally, the potential therapeutic value of HIF-1α as a targeted therapy and its significance in the clinical management of sepsis will be discussed, aiming to serve as a significant reference for an in-depth understanding of sepsis pathogenesis and potential therapeutic targets, as well as to establish a theoretical foundation for clinical applications.


Assuntos
Insuficiência de Múltiplos Órgãos , Sepse , Humanos , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
8.
Acta Pharmacol Sin ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858494

RESUMO

T cell engaging bispecific antibodies (TCBs) have recently become significant in cancer treatment. In this study we developed MSLN490, a novel TCB designed to target mesothelin (MSLN), a glycosylphosphatidylinositol (GPI)-linked glycoprotein highly expressed in various cancers, and evaluated its efficacy against solid tumors. CDR walking and phage display techniques were used to improve affinity of the parental antibody M912, resulting in a pool of antibodies with different affinities to MSLN. From this pool, various bispecific antibodies (BsAbs) were assembled. Notably, MSLN490 with its IgG-[L]-scFv structure displayed remarkable anti-tumor activity against MSLN-expressing tumors (EC50: 0.16 pM in HT-29-hMSLN cells). Furthermore, MSLN490 remained effective even in the presence of non-membrane-anchored MSLN (soluble MSLN). Moreover, the anti-tumor activity of MSLN490 was enhanced when combined with either Atezolizumab or TAA × CD28 BsAbs. Notably, a synergistic effect was observed between MSLN490 and paclitaxel, as paclitaxel disrupted the immunosuppressive microenvironment within solid tumors, enhancing immune cells infiltration and improved anti-tumor efficacy. Overall, MSLN490 exhibits robust anti-tumor activity, resilience to soluble MSLN interference, and enhanced anti-tumor effects when combined with other therapies, offering a promising future for the treatment of a variety of solid tumors. This study provides a strong foundation for further exploration of MSLN490's clinical potential.

9.
Lipids Health Dis ; 23(1): 72, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461258

RESUMO

BACKGROUND: This multicenter observational study aimed to determine whether dyslipidemia or obesity contributes more significantly to unfavorable clinical outcomes in patients experiencing a first-ever ischemic stroke (IS). METHODS: The study employed a machine learning predictive model to investigate associations among body mass index (BMI), body fat percentage (BFP), high-density lipoprotein (HDL), triglycerides (TG), and total cholesterol (TC) with adverse outcomes in IS patients. Extensive real-world clinical data was utilized, and risk factors significantly linked to adverse outcomes were identified through multivariate analysis, propensity score matching (PSM), and regression discontinuity design (RDD) techniques. Furthermore, these findings were validated via a nationwide multicenter prospective cohort study. RESULTS: In the derived cohort, a total of 45,162 patients diagnosed with IS were assessed, with 522 experiencing adverse outcomes. A multifactorial analysis incorporating PSM and RDD methods identified TG (adjusted odds ratio (OR) = 1.110; 95% confidence interval (CI): 1.041-1.183; P <  0.01) and TC (adjusted OR = 1.139; 95%CI: 1.039-1.248; P <  0.01) as risk factors. However, BMI, BFP, and HDL showed no significant effect. In the validation cohort, 1410 controls and 941 patients were enrolled, confirming that lipid levels are more strongly correlated with the prognosis of IS patients compared to obesity (TC, OR = 1.369; 95%CI: 1.069-1.754; P <  0.05; TG, OR = 1.332; 95%CI: 1.097-1.618; P <  0.01). CONCLUSION: This study suggests that dyslipidemia has a more substantial impact on the prognosis of IS patients compared to obesity. This highlights the importance of prioritizing dyslipidemia management in the treatment and prevention of adverse outcomes in IS patients.


Assuntos
Dislipidemias , AVC Isquêmico , Humanos , Estudos Prospectivos , HDL-Colesterol , Obesidade/complicações , Fatores de Risco , Triglicerídeos , Lipoproteínas HDL , China/epidemiologia
10.
Plant Dis ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411666

RESUMO

Bletilla striata is a valuable medicine in China, belonging to the Orchidaceae family, and is used for treating various ailments such as hemoptysis, pyocutaneous disease, and anal fissure by preventing blood flow, reducing swelling, and promoting granulation. In June 2022, a disease with symptoms similar to root rot was observed on B. striata in the pineland (the area was 0.4 hectare) of Lancang County (22°48'17" N, 99°46'58"22 E), Yunnan Province, China. The root rot incidence rate reached 16% (Table S1). The root rot incidence was calculated as follows: root rot incidence (%) = (number of root rot seedlings/total number of seedlings investigated) × 100. In May 2023, the similar symptoms were observed in the field, and the disease incidence was 17% (Table S1). Initially, there were no obvious symptoms on the leaves. Subsequently, the leaves wilted and brown spots appeared. Later, the entire leaf browned, withered and eventually died (Fig. S1A, B). The roots were brown and the browning spread from the root edge to the center, causing vascular bundle browning and dead lignified fibers in the cortex (Fig. S1C, D). To isolate the causal pathogen, 20 symptomatic root tissues were collected from 20 plants. Cutting the diseased tissues into small pieces (0.5 × 0.5 cm). After surface sterilization (30s with 75% ethanol and 3 min with 2% sodium hypochlorite, rinsed three times with sterile water), the disinfected root tissues were plated onto potato dextrose agar (PDA) and incubated at 25℃ for 4 to 6 days with 12 h light/dark photoperiod. A total of 10 single-spore isolates with similar morphology and conidial characteristics were obtained. one representative isolate BJG6 was selected for identification and further study. The fungal colony was reddish-brown or orange-white on PDA after 8 days of incubation at 25℃. The mycelium was like carpet or cotton, and the edge of colony was uniform (Fig. S1E). Large conidia were formed on simple conidial peduncles (Fig. S1F, G). The conidia with 1~3 septates and 1 mostly, with cylindrical shapes and narrow tops but sharp bases (Fig. S1H-J). Conidia with 1 septate measured as 5.5 (4.3-6.7) × 20.7 (16.0-25.4) µm (n=30), while those with 2 septates measured as 6.6 (5.8-7.4) × 26.5 (21.7-31.3) µm (n=30), and those with 3 septates was 6.9 (6.2-7.8) × 31.8 (29.3-34.3) µm (n=30). Ellipsoidal microconidia could be formed on conidiophore and measured as 2.4 (1.9-2.9) × 4.9 (5.9-3.9) µm to 2.7 (2.2-3.2) × 5.4 (4.3-6.5) µm (n=30). Spherical or subspherical chlamydospores were produced on low-nutrient agar, with an average size of 5.8(5.0-6.6) µm×5.3 (4.4-6.2) µm (n=30) (Fig. S1K, L). According to the morphology and conidial features, the pathogen was consistent with the description of Ilyonectria coprosmae (Cabral et al. 2012). The total genomic DNA was extracted, and primer pairs ITS4/ITS5 were used to amplify and sequence the rDNA-ITS region (ITS1-5.8 S rRNA-ITS2 gene regions) (White et al. 1990). The sequences were deposited in GenBank (SUB13905750 for ITS). BLAST searches revealed BJG6 showed 98% homology with corresponding sequences of Ilyonectria coprosmae in GenBank (JF735260). A phylogenetic tree (MEGA 7.0) was constructed using maximum-likelihood methods (Fig. S2). To identify pathogenicity, a cultured medium in a size of 6mm containing isolate BJG6 was inoculated onto ten healthy roots of B. striata, PDA plugs alone were used as the uninoculated controls. All samples were placed in a dark inoculation chamber at 25℃. The pathogenicity test was replicated three times. After two weeks, all inoculated roots appeared similar symptoms identical to those observed on field plants (Fig. S1M, N-P), while control plants remained healthy (Fig. S1Q, R). The same pathogenic fungus was reisolated from the symptomatic root rot, and the characteristics of colony and conidia were the same as the original isolates (Fig. S1S, T). These results confirmed I. coprosmae as the causal pathogen of root rot disease on B. striata in China by Koch's postulates tests for the first time. Further exploration should be conducted to understand the occurrence and migration of this disease, so as to develop specific and efficient disease management strategies in the future.

11.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892163

RESUMO

Extreme weather poses huge challenges for animals that must adapt to wide variations in environmental temperature and, in many cases, it can lead to the local extirpation of populations or even the extinction of an entire species. Previous studies have found that one element of amphibian adaptation to environmental stress involves changes in mitochondrial gene expression at low temperatures. However, to date, comparative studies of gene expression in organisms living at extreme temperatures have focused mainly on nuclear genes. This study sequenced the complete mitochondrial genomes of five Asian hylid frog species: Dryophytes japonicus, D. immaculata, Hyla annectans, H. chinensis and H. zhaopingensis. It compared the phylogenetic relationships within the Hylidae family and explored the association between mitochondrial gene expression and evolutionary adaptations to cold stress. The present results showed that in D. immaculata, transcript levels of 12 out of 13 mitochondria genes were significantly reduced under cold exposure (p < 0.05); hence, we put forward the conjecture that D. immaculata adapts by entering a hibernation state at low temperature. In H. annectans, the transcripts of 10 genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, COX1, COX2 and ATP8) were significantly reduced in response to cold exposure, and five mitochondrial genes in H. chinensis (ND1, ND2, ND3, ND4L and ATP6) also showed significantly reduced expression and transcript levels under cold conditions. By contrast, transcript levels of ND2 and ATP6 in H. zhaopingensis were significantly increased at low temperatures, possibly related to the narrow distribution of this species primarily at low latitudes. Indeed, H. zhaopingensis has little ability to adapt to low temperature (4 °C), or maybe to enter into hibernation, and it shows metabolic disorder in the cold. The present study demonstrates that the regulatory trend of mitochondrial gene expression in amphibians is correlated with their ability to adapt to variable climates in extreme environments. These results can predict which species are more likely to undergo extirpation or extinction with climate change and, thereby, provide new ideas for the study of species extinction in highly variable winter climates.


Assuntos
Anuros , Genoma Mitocondrial , Filogenia , Animais , Anuros/genética , Anuros/fisiologia , Resposta ao Choque Frio/genética , Temperatura Baixa , Adaptação Fisiológica/genética , Regulação da Expressão Gênica
12.
Angew Chem Int Ed Engl ; 63(18): e202401671, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38418423

RESUMO

The rapid assembly of valuable cyclic amine architectures in a single step from simple precursors has been recognized as an ideal platform in term of efficiency and sustainability. Although a vast number of studies regarding cyclic amine synthesis has been reported, new synthetic disconnection approaches are still high in demand. Herein, we report a catalytic radical-polar crossover cycloaddition to cyclic amine synthesis triggered from primary sulfonamide under photoredox condition. This newly developed disconnection, comparable to established synthetic approaches, will allow to construct ß, ß-disubstituted cyclic amine and ß-monosubstituted cyclic amine derivatives efficiently. This study highlights the unique utility of primary sulfonamide as a bifunctional reagent, which acts as a radical precursor and a nucleophile. The open-shell methodology demonstrates broad tolerance to various functional groups, drug derivatives and natural products in an economically and sustainable fashion.

13.
PLoS Pathog ; 17(1): e1008770, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428670

RESUMO

Environments such as light condition influence the spread of infectious diseases by affecting insect vector behavior. However, whether and how light affects the host defense which further affects insect preference and performance, remains unclear, nor has been demonstrated how pathogens co-adapt light condition to facilitate vector transmission. We previously showed that begomoviral ßC1 inhibits MYC2-mediated jasmonate signaling to establish plant-dependent mutualism with its insect vector. Here we show red-light as an environmental catalyzer to promote mutualism of whitefly-begomovirus by stabilizing ßC1, which interacts with PHYTOCHROME-INTERACTING FACTORS (PIFs) transcription factors. PIFs positively control plant defenses against whitefly by directly binding to the promoter of terpene synthase genes and promoting their transcription. Moreover, PIFs interact with MYC2 to integrate light and jasmonate signaling and regulate the transcription of terpene synthase genes. However, begomovirus encoded ßC1 inhibits PIFs' and MYC2' transcriptional activity via disturbing their dimerization, thereby impairing plant defenses against whitefly-transmitted begomoviruses. Our results thus describe how a viral pathogen hijacks host external and internal signaling to enhance the mutualistic relationship with its insect vector.


Assuntos
Begomovirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Simbiose , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Arabidopsis/metabolismo , Arabidopsis/virologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Luz , Fitocromo , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética , Fatores de Virulência/genética
14.
Virol J ; 20(1): 186, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605144

RESUMO

The genomic components of multipartite viruses are encapsidated in separate virus particles, and the frequencies of genomic components represent one of the key genetic features. Many begomoviruses of economic significance are bipartite, and the details of the association between their genomic components remain largely unexplored. We first analyzed the temporal dynamics of the quantities of DNA-A and DNA-B and the B/A ratio of the squash leaf curl China virus (SLCCNV) in plants and found that while the quantities of DNA-A and DNA-B varied significantly during infection, the B/A ratio remained constant. We then found that changes in the B/A ratio in agrobacteria inoculum may significantly alter the B/A ratio in plants at 6 days post inoculation, but the differences disappeared shortly thereafter. We next showed that while the quantities of DNA-A and DNA-B among plants infected by agrobacteria, sap transmission and whitefly-mediated transmission differed significantly, the B/A ratios were similar. Further analysis of gene expression revealed that the ratio of the expression of genes encoded by DNA-A and DNA-B varied significantly during infection. Finally, we monitored the temporal dynamics of the quantities of DNA-A and DNA-B and the B/A ratio of another bipartite begomovirus, and a constant B/A ratio was similarly observed. Our findings highlight the maintenance of a constant ratio between the two genomic components of bipartite begomoviruses during infection and transmission, and provide new insights into the biology of begomoviruses.


Assuntos
Begomovirus , Begomovirus/genética , Vacinação , Vírion , Genômica
15.
Crit Care ; 27(1): 290, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464428

RESUMO

BACKGROUND: The present study aimed to investigate the correlation between weight status and mortality in mechanically ventilated patients and explore the potential mediators. METHODS: Three medical centers encompassing 3301 critically ill patients receiving mechanical ventilation were assembled for retrospective analysis to compare mortality across various weight categories of patients using machine learning algorithms. Bioinformatics analysis identified genes exhibiting differential expression among distinct weight categories. A prospective study was then conducted on a distinct cohort of 50 healthy individuals and 193 other mechanically ventilated patients. The expression levels of the genes identified through bioinformatics analysis were quantified through enzyme-linked immunosorbent assay (ELISA). RESULTS: The retrospective analysis revealed that overweight individuals had a lower mortality rate than underweight individuals, and body mass index (BMI) was an independent protective factor. Bioinformatics analysis identified matrix metalloproteinase 8 (MMP-8) as a differentially expressed gene between overweight and underweight populations. The results of further prospective studies showed that overweight patients had significantly lower MMP-8 levels than underweight patients ((3.717 (2.628, 4.191) vs. 2.763 (1.923, 3.753), ng/ml, P = 0.002). High MMP-8 levels were associated with increased mortality risk (OR = 4.249, P = 0.005), indicating that elevated level of MMP-8 predicts the mortality risk of underweight patients receiving mechanical ventilation. CONCLUSIONS: This study provides evidence for a protective effect of obesity in mechanically ventilated patients and highlights the potential role of MMP-8 level as a biomarker for predicting mortality risk in this population.


Assuntos
Metaloproteinase 8 da Matriz , Sobrepeso , Humanos , Índice de Massa Corporal , Estudos Prospectivos , Respiração Artificial , Estudos Retrospectivos , Magreza , Estudos Observacionais como Assunto
16.
Acta Pharmacol Sin ; 44(7): 1455-1463, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36707721

RESUMO

The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses challenges to the effectiveness of neutralizing antibodies. Rational design of antibody cocktails is a realizable approach addressing viral immune evasion. However, evaluating the breadth of antibody cocktails is essential for understanding the development potential. Here, based on a replication competent vesicular stomatitis virus model that incorporates the spike of SARS-CoV-2 (VSV-SARS-CoV-2), we evaluated the breadth of a number of antibody cocktails consisting of monoclonal antibodies and bispecific antibodies by long-term passaging the virus in the presence of the cocktails. Results from over two-month passaging of the virus showed that 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 from these cocktails were highly resistant to random mutation, and there was no breakthrough after 30 rounds of passaging. As a control, antibody REGN10933 was broken through in the third passage. Next generation sequencing was performed and several critical mutations related to viral evasion were identified. These mutations caused a decrease in neutralization efficiency, but the reduced replication rate and ACE2 susceptibility of the mutant virus suggested that they might not have the potential to become epidemic strains. The 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 cocktails that picked from the VSV-SARS-CoV-2 system efficiently neutralized all current variants of concern and variants of interest including the most recent variants Delta and Omicron, as well as SARS-CoV-1. Our results highlight the feasibility of using the VSV-SARS-CoV-2 system to develop SARS-CoV-2 antibody cocktails and provide a reference for the clinical selection of therapeutic strategies to address the mutational escape of SARS-CoV-2.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Humanos , SARS-CoV-2 , Terapia Combinada de Anticorpos , Testes de Neutralização , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Neutralizantes
17.
Langenbecks Arch Surg ; 408(1): 250, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37382724

RESUMO

PURPOSE: There is little information regarding the overall survival (OS) predictive ability of the combination of tumor burden score (TBS), α-fetoprotein (AFP), and albumin-bilirubin (ALBI) grade for patients with hepatocellular carcinoma (HCC). Here, we aimed to develop a model including TBS, AFP, and ALBI grade to predict HCC patient OS following liver resection. METHODS: Patients (N = 1556) from six centers were randomly divided 1:1 into training and validation sets. The X-Tile software was used to determine the optimal cutoff values. The time-dependent area under the receiver operating characteristic curve (AUROC) was calculated to assess the prognostic ability of the different models. RESULTS: In the training set, tumor differentiation, TBS, AFP, ALBI grade, and Barcelona Clinic Liver Cancer (BCLC) stage were independently related to OS. According to the coefficient values of TBS, AFP, and ALBI grade, we developed the TBS-AFP-ALBI (TAA) score using a simplified point system (0, 2 for low/high TBS, 0, 1 for low/high AFP and 0,1 for ALBI grade 1/2). Patients were further divided into low TAA (TAA ≤ 1), medium TAA (TAA = 2-3), and high TAA (TAA= 4) groups. TAA scores (low: referent; medium, HR = 1.994, 95% CI = 1.492-2.666; high, HR = 2.413, 95% CI = 1.630-3.573) were independently associated with patient survival in the validation set. The TAA scores showed higher AUROCs than BCLC stage for the prediction of 1-, 3-, and 5-year OS in both the training and validation sets. CONCLUSION: TAA is a simple score that has better OS prediction performance than the BCLC stage in predicting OS for HCC patients after liver resection.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirurgia , alfa-Fetoproteínas , Carga Tumoral , Neoplasias Hepáticas/cirurgia , Albuminas , Bilirrubina
18.
Plant Dis ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498637

RESUMO

Wasabi (Eutrema japonicum) is a root vegetable that is cultivated at large scales in southwestern China. In November 2021, approximately 40% of plants in a forested plantation in Dadishui, Yunnan Province, China (25.47°N, 103.22°E), showed leaf spot symptoms. The early symptoms were small black spots that gradually expanded into irregular brown to black lesions (0.5-1.5 cm), which were restricted by leaf veins. Yellow halos were observed at the outer edges of necrotic lesions. To identify the causal agent, we collected 20 diseased leaves and obtained fungal isolates from symptomatic leaf tissues. Following surface sterilization with 75% ethanol for 30 s, the tissues were cultured on potato dextrose agar (PDA) plates and incubated at 25°C under a 12 h light/12 h dark light cycle. After 7 days of incubation, a total of 12 isolates were obtained through single-spore culture. All isolates had similar colony morphology, and produced fluffy white mycelia and yellow pigment after 1 week of PDA culture at 25°C, and blackish- brown mycelium, tan pigment, and conidia after 2 weeks. The conidia were hyaline and cylindrical, with an average size of 4.6 µm × 2.2 µm. These morphological characteristics similar to the description of Leptosphaeria biglobosa (Shoemaker et. al, 2001) and Leptosphaeria maculans (Vincenot et al. 2008). Genomic DNA was extracted from mycelium of isolate SK-1, which was harvested from 10-day-old PDA culture using a FAST plant genomic DNA Extraction Kit (Biomed, China), following the manufacturer's instructions. The species-specific primers LbigF, LmacF, and LmacR (Liu et al. 2006) were used for identification via polymerase chain reaction (PCR). A 444-bp fragment characteristic of L. biglobosa 'brassicae' (Lbb), and a 330-bp of L. maculans 'brassicae' (Lmb) were amplified, respectively. Internal transcribed spacer (ITS) sequences (592 bp), part of the 5' end of beta-tubulin (968 bp), and actin (899 bp) were also amplified using the primers ITS1/ITS4, BT1/BT2, and ACTF/ACTR (Vincenot et al. 2008), respectively. PCR was performed in a volume of 25 µL containing 12.5 µL 2 × T5 Super PCR Mix (Tsingke Biotech, Beijing, China), 1 µL 10 µM primer (Tsingke Biotech), 1 µL DNA template, and an aliquot of sterile water to attain the total volume. The thermal cycler settings were 5 min at 98°C; 35 cycles of 10 s at 98°C, 10 s at 58°C, and 30 s at 72°C; and extension for 2 min at 72°C. The ITS sequence of isolate SK-1 (GenBank accession no. OQ216838), the partial ß-tubulin gene sequence (OQ241183), and the actin gene sequence (OQ241184) indicated 100% query cover and 100% identity with L. biglobosa (DQ458906), Lbb strain B3.6 (AY748995), and Lbb strain 2379-4 (AY748949), respectively. Phylogenetic analysis (King et al. 2022) also identified of isolate SK-1 as Lbb. To determinate its pathogenicity, isolate SK-1 was grown on PDA incubated at 28°C for 2 weeks, and conidial suspensions were prepared at a concentration of 106 conidia/mL. Then, 15 leaves of 4-month-old E. japonicum seedlings were needle-wounded on the front and inoculated by syringe injection of 10 µL of the appropriate conidial suspension. We used 10 µL of the sterilized distilled water as the control under forest growth conditions. All inoculation sites were covered with cotton strips and moistened with 1.0 mL sterile water to maintain humidity. After 12 days of incubation, the leaves developed symptoms similar to those observed in the field, and the fungus was reisolated from diseased leaves, whereas the controls remained healthy. Based on these results, we identified L. biglobosa 'brassicae' as the causal agent of leaf spot on E. japonicum in China. This fungus has been reported to cause blackleg in many Brassica crops in China such as Brassica napus (Fitt et al. 2006), Brassica oleracea (Zhou et al. 2019), B. juncea var. tumida (Deng et al. 2020), Brassica rapa subsp. pekinensis (Yu et al. 2021). To the best of our knowledge, this is the first report of L. biglobosa causing leaf spots in E. japonicum in China. Our data provide a basis for disease management in E. japonicum production in China.

19.
Plant Dis ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172971

RESUMO

Panax notoginseng-also known as Tianqi and Sanqi-is one of the most highly valued medicinal perennial herbs in the world (Wang et al. 2016). In August 2021, leaf spot was observed on P. notoginseng leaves in Lincang sanqi base (23º43´10˝N, 100º7´32˝E, 13.33 hm2). Symptoms expanded from water soaked areas on the leaves to form irregular round or oval leaf spots with transparent or grayish-brown centers containing black granular matter, with an incidence of 10 to 20%. To identify the causal agent, ten symptomatic leaves were randomly selected from ten P. notoginseng plants. Symptomatic leaves were cut into small pieces (5 mm2) with asymptomatic tissue margins, disinfected in 75% ethanol for 30s and in 2% sodium hypochlorite for 3 min, and rinsed three times with sterile distilled water. The tissue portions were placed on potato dextrose agar (PDA) plates incubated at 20℃ with a 12 h light/dark photoperiod. Seven pure isolates were obtained with similar colony morphology, dark gray (top view) or taupe (back view) coloration, with flat and villous surfaces. Pycnidia were globose to subglobose, glabrous or with few mycelial outgrowths, dark brown to black, 22.46 to 155.94 (av. 69.57) µm × 18.20 to 130.5 (av. 57.65) µm (n=50) in size. Conidia were ellipsoidal to cylindrical, thinwalled, smooth, hyaline, aseptate, and measured 1.47 to 6.81 (av. 4.29) µm long and 1.01 to 2.97 (av. 1.98) µm thick (n=100). The isolated strains were preliminarily identified as Boeremia sp. based on the morphological characteristics of colonies and conidia. (Aveskamp et al. 2010; Schaffrath et al. 2021). To confirm pathogen identity, the total genomic DNA of two isolates (LYB-2 and LYB-3) was extracted using the T5 Direct PCR kit. The internal transcribed spacer (ITS), 28S large subunit nrRNA gene (LSU), and ß-tubulin (TUB2) gene regions were PCR-amplified using primers ITS1/ITS4, LR0Rf/LR5r, and BT2F/BT4R (Chen et al. 2015), respectively. Sequences have been deposited in GenBank (ON908942-ON908943 for ITS, ON908944-ON908945 for LSU, ON929285-ON929286 for TUB2). BLASTn searches of generated DNA sequences from 2 purified isolates (LYB-2 and LYB-3) against GenBank showed high similarity (>99%) with the sequences of Boeremia linicola. Moreover, a phylogenetic tree was constructed based on the neighbor-joining method in MEGA-X (Kumar et al. 2018) and revealed that the 2 isolates were closest to B. linicola (CBS 116.76). Pathogenicity tests were conducted with the 2 isolates (LYB-2 and LYB-3) as described by Cai et al. (2009) with slight modifications. Each isolate was inoculated with three healthy annual P. notoginseng plants, and each leaf was inoculated with three drops of conidia suspension (106 spores/mL). Three P. notoginseng plants inoculated with sterile water were used as controls. All plants were covered with plastic bags incubated in a greenhouse (20℃, 90%RH, 12 h light/dark photoperiod). Fifteen days post-inoculation, all inoculated leaves showed similar lesions, and the symptoms were identical to those in the field. The pathogen was reisolated from symptomatic leaf spots, and the colony characteristics were identical to the original isolates. Control plants remained healthy, and no fungus was re-isolated. Morphological characteristics, sequence alignment and pathogenicity tests confirmed that B. linicola was the cause of P. notoginseng leaf spot disease. This is the first report of B. linicola causing leaf spot on P. notoginseng in Yunnan, China. The identification of B. linicola as the causal agent of the observed leaf spot on P. notoginseng is critical to the prevention and control of this disease in the future.

20.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(5): 886-892, 2023 Oct 18.
Artigo em Zh | MEDLINE | ID: mdl-37807744

RESUMO

OBJECTIVE: To investigate the association of isolated thyroid peroxidase antibody (TPOAb) positive in the first trimester with fetal growth. METHODS: A total of 16 446 pregnant women were included in the birth cohort study, whose last menstrual period was between May 2016 and April 2019 and with singleton pregnancy. Maternal serum samples were collected when they firstly came for prenatal care in the first trimester. The pregnant women were consecutively seen and followed in the hospital and the information of pregnant women was extracted from the electronic medical information system. The pregnant women were divided into isolated TPOAb positive group (n=1 654) and euthyroid group (n=14 792). Three fetal ultrasound examinations were scheduled during the routine prenatal visits at the hospital and were performed by trained sonographers. All fetal growth indicators were quantified as gestational age- and gender- adjusted standard deviation score (Z-score) using the generalized additive models for location, scale and shape (GAMLSS). Fetal growth indicators included estimated fetal weight (EFW), abdominal circumference (AC), biparietal diameter (BPD), femur length (FL) and head circumference (HC). Fetal growth restriction (FGR) was defined as AC or EFW Z-score<3rd centile based on clinical consensus. Generalized estimating equation (GEE) analysis was applied to assess the association of maternal isolated TPOAb positive with fetal growth. The generalized linear model was further used to analyze the association between isolated TPOAb positive and fetal growth indicator at different gestational ages when the fetal growth indicator was significantly associated with isolated TPOAb positive in the GEE mo-del. RESULTS: The median gestational age at three ultrasound measurements was 23.6 (23.3, 24.1), 30.3 (29.7, 30.9), 37.3 (37.0, 37.7) weeks, respectively. The BPD Z-score was higher in isolated TPOAb positive women, compared with the euthyroid pregnant women after adjustment (ß=0.057, 95%CI: 0.014-0.100, P=0.009). The generalized linear model showed the BPD Z-score was higher in the isolated TPOAb positive women at the end of 21-25 weeks (ß=0.052, 95%CI: 0.001-0.103, P=0.044), 29-32 weeks (ß=0.055, 95%CI: 0.004-0.107, P=0.035) and 36-40 weeks (ß=0.068, 95%CI: 0.011-0.125, P=0.020), compared with the euthyroid pregnant women. There was no difference in other fetal growth indicators (EFW, AC, FL and HC) and FGR between the isolated TPOAb positive and euthyroid pregnant women. CONCLUSION: The BPD Z-score was slightly increased in the isolated TPOAb positive pregnant women in the first trimester, while other fetal growth indicators were not changed. The reproducibility and practical significance of this result need to be confirmed.


Assuntos
Desenvolvimento Fetal , Iodeto Peroxidase , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez , Estudos de Coortes , Reprodutibilidade dos Testes , Peso Fetal , Retardo do Crescimento Fetal , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA