Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770468

RESUMO

Single photon sources based on semiconductor quantum dots are one of the most prospective elements for optical quantum computing and cryptography. Such systems are often based on Bragg resonators, which provide several ways to control the emission of quantum dots. However, the fabrication of periodic structures with many thin layers is difficult. On the other hand, the coupling of single-photon sources with resonant nanoclusters made of high-index dielectric materials is known as a promising way for emission control. Our experiments and calculations show that the excitation of magnetic Mie-type resonance by linearly polarized light in a GaAs nanopillar oligomer with embedded InAs quantum dots leads to quantum emitters absorption efficiency enhancement. Moreover, the nanoresonator at the wavelength of magnetic dipole resonance also acts as a nanoantenna for a generated signal, allowing control over its radiation spatial profile. We experimentally demonstrated an order of magnitude emission enhancement and numerically reached forty times gain in comparison with unstructured film. These findings highlight the potential of quantum dots coupling with Mie-resonant oligomers collective modes for nanoscale single-photon sources development.

2.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500892

RESUMO

In this paper, we studied the role of the crystal structure in spheroidal CdSe nanocrystals on the band-edge exciton fine structure. Ensembles of zinc blende and wurtzite CdSe nanocrystals are investigated experimentally by two optical techniques: fluorescence line narrowing (FLN) and time-resolved photoluminescence. We argue that the zero-phonon line evaluated by the FLN technique gives the ensemble-averaged energy splitting between the lowest bright and dark exciton states, while the activation energy from the temperature-dependent photoluminescence decay is smaller and corresponds to the energy of an acoustic phonon. The energy splittings between the bright and dark exciton states determined using the FLN technique are found to be the same for zinc blende and wurtzite CdSe nanocrystals. Within the effective mass approximation, we develop a theoretical model considering the following factors: (i) influence of the nanocrystal shape on the bright-dark exciton splitting and the oscillator strength of the bright exciton, and (ii) shape dispersion in the ensemble of the nanocrystals. We show that these two factors result in similar calculated zero-phonon lines in zinc blende and wurtzite CdSe nanocrystals. The account of the nanocrystals shape dispersion allows us to evaluate the linewidth of the zero-phonon line.

3.
Nanoscale ; 13(41): 17566-17575, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34661218

RESUMO

We investigated multilayer plates prepared by exfoliation from a high-quality MoS2 crystal and revealed that they represent a new object - a van der Waals homostructure consisting of a bulk core and a few detached monolayers on its surface. This architecture comprising elements with different electron band structures leads to specific luminescence, when the broad emission band from the core is cut by the absorption peaks of strong exciton resonances in the surface monolayers. The exfoliated flakes exhibit strong optical anisotropy. We have observed linear to circular polarization conversion that reaches 15% for normally incident light in transmission geometry. This background effect is due to the fluctuations of the c axis relative to the normal, whereas the pronounced resonance contribution is explained by the polarization anisotropy of the excitons localized in the stripes of the dissected surface monolayers.

4.
Sci Rep ; 10(1): 19048, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149244

RESUMO

Core-shell nanorods (NRs) with InGaN/GaN quantum wells (QWs) are promising for monolithic white light-emitting diodes and multi-color displays. Such applications, however, are still a challenge because intensity of the red band is too weak compared with blue and green. To clarify this problem, we measured photoluminescence of different NRs, depending on power and temperature, as well as with time resolution. These studies have shown that dominant emission bands come from nonpolar and semipolar QWs, while a broad yellow-red band arises mainly from defects in the GaN core. An emission from polar QWs located at the NR tip is indistinguishable against the background of defect-related luminescence. Our calculations of electromagnetic field distribution inside the NRs show a low density of photon states at the tip, which additionally suppresses the radiation of polar QWs. We propose placing polar QWs inside a cylindrical part of the core, where the density of photon states is higher and the well area is much larger. Such a hybrid design, in which the excess of blue radiation from shell QWs is converted to red radiation in core wells, can help solve the urgent problem of red light for many applications of NRs.

5.
Sci Rep ; 9(1): 14985, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628351

RESUMO

Doping of single-walled carbon nanotubes leads to the formation of new energy levels which are able to participate in optical processes. Here, we investigate (6,5)-single walled carbon nanotubes doped in a solution of hydrochloric acid using optical absorption, photoluminescence, and pump-probe transient absorption techniques. We find that, beyond a certain level of doping, the optical spectra of such nanotubes exhibit the spectral features related to two doping-induced levels, which we assign to a localized exciton [Formula: see text] and a trion T, appearing in addition to an ordinary exciton [Formula: see text]. We evaluate the formation and relaxation kinetics of respective states and demonstrate that the kinetics difference between E1 and X energy levels perfectly matches the kinetics of the state T. This original finding evidences the formation of trions through nonradiative relaxation via the [Formula: see text] level, rather than via a direct optical excitation from the ground energy state of nanotubes.

6.
Sci Rep ; 8(1): 15767, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361633

RESUMO

We investigate the optical properties of porous GaN films of different porosities, focusing on the behaviors of the excitonic features in time-integrated and time-resolved photoluminescence. A substantial enhancement of both excitonic emission intensity and recombination rate, along with insignificant intensity weakening under temperature rise, is observed in the porous GaN films. These observations are in line with (i) the local concentration of electric field at GaN nanoparticles and pores due to the depolarization effect, (ii) the efficient light extraction from the nanoparticles. Besides, the porosification enlarges the surface of the air/semiconductor interface, which further promotes the extraction efficiency and suppresses non-radiative recombination channels. Our findings open a way to increasing the emission efficiency of nanophotonic devices based on porous GaN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA