Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 626(7998): 306-312, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326593

RESUMO

Rechargeable Li-metal batteries have the potential to more than double the specific energy of the state-of-the-art rechargeable Li-ion batteries, making Li-metal batteries a prime candidate for next-generation high-energy battery technology1-3. However, current Li-metal batteries suffer from fast cycle degradation compared with their Li-ion battery counterparts2,3, preventing their practical adoption. A main contributor to capacity degradation is the disconnection of Li from the electrochemical circuit, forming isolated Li4-8. Calendar ageing studies have shown that resting in the charged state promotes further reaction of active Li with the surrounding electrolyte9-12. Here we discover that calendar ageing in the discharged state improves capacity retention through isolated Li recovery, which is in contrast with the well-known phenomenon of capacity degradation observed during the charged state calendar ageing. Inactive capacity recovery is verified through observation of Coulombic efficiency greater than 100% on both Li||Cu half-cells and anode-free cells using a hybrid continuous-resting cycling protocol and with titration gas chromatography. An operando optical setup further confirms excess isolated Li reactivation as the predominant contributor to the increased capacity recovery. These insights into a previously unknown pathway for capacity recovery through discharged state resting emphasize the marked impact of cycling strategies on Li-metal battery performance.

2.
Nano Lett ; 23(16): 7524-7531, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565722

RESUMO

The composition of the solid electrolyte interphase (SEI) plays an important role in controlling Li-electrolyte reactions, but the underlying cause of SEI composition differences between electrolytes remains unclear. Many studies correlate SEI composition with the bulk solvation of Li ions in the electrolyte, but this correlation does not fully capture the interfacial phenomenon of SEI formation. Here, we provide a direct connection between SEI composition and Li-ion solvation by forming SEIs using polar substrates that modify interfacial solvation structures. We circumvent the deposition of Li metal by forming the SEI above Li+/Li redox potential. Using theory, we show that an increase in the probability density of anions near a polar substrate increases anion incorporation within the SEI, providing a direct correlation between interfacial solvation and SEI composition. Finally, we use this concept to form stable anion-rich SEIs, resulting in high performance lithium metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA