Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 249: 118387, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336162

RESUMO

Achieving a balance between greenhouse gas mitigation and biomass production in grasslands necessitates optimizing irrigation frequency and nitrogen addition, which significantly influence grassland productivity and soil nitrous oxide emissions, and consequently impact the ecosystem carbon dioxide exchange. This study aimed to elucidate these influences using a controlled mesocosm experiment where bermudagrass (Cynodon dactylon L.) was cultivated under varied irrigation frequencies (daily and every 6 days) with (100 kg ha-1) or without nitrogen addition; measurements of net ecosystem carbon dioxide exchange, ecosystem respiration, soil respiration, and nitrous oxide emissions across two cutting events were performed as well. The findings revealed a critical interaction between water-filled pore space, regulated by irrigation, and nitrogen availability, with the latter exerting a more substantial influence on aboveground biomass growth and ecosystem carbon dioxide exchange than water availability. Moreover, the total dry matter was significantly higher with nitrogen addition compared to without nitrogen addition, irrespective of the irrigation frequency. In contrast, soil nitrous oxide emissions were observed to be significantly higher with increased irrigation frequency and nitrogen addition. The effects of nitrogen addition on soil respiration components appeared to depend on water availability, with autotrophic respiration seeing a significant rise with nitrogen addition under limited irrigation (5.4 ± 0.6 µmol m-2 s-1). Interestingly, the lower irrigation frequency did not result in water stress, suggesting resilience in bermudagrass. These findings highlight the importance of considering interactions between irrigation and nitrogen addition to optimize water and nitrogen input in grasslands for a synergistic balance between grassland biomass production and greenhouse gas emission mitigation.


Assuntos
Irrigação Agrícola , Biomassa , Pradaria , Gases de Efeito Estufa , Nitrogênio , Gases de Efeito Estufa/análise , Nitrogênio/metabolismo , Irrigação Agrícola/métodos , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Solo/química , Cynodon/crescimento & desenvolvimento , Cynodon/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Fertilizantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA