Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 467(1-2): 1-13, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858001

RESUMO

Fibroblast growth factor receptor (FGFR) signaling patterns multiple tissues in both vertebrates and invertebrates, largely through the activation of intracellular kinases. Recent studies have demonstrated that the phosphatase, PTEN negatively regulates FGFR signaling, such that the loss of PTEN can compensate for reduced FGFR signaling to rescue aspects of normal development. In the developing mouse lens, FGFR signaling promotes cell survival and fiber cell differentiation, and the loss of Pten largely compensates for the loss of Fgfr2 during lens development. To explore this regulatory relationship further, we focused on the phenotypic consequences of Pten loss on lens development and fiber cell differentiation in the absence of all FGFR signaling, both in vivo and in lens epithelial explants. Pten deletion partially rescues primary fiber cell elongation and γ-crystallin accumulation in FGFR-deficient lenses in vivo but fails to rescue cell survival or proliferation. However, in lens epithelial explants, where cells survive without FGFR signaling, Pten deletion rescues vitreous humor-induced lens fiber cell differentiation in the combined absence of Fgfr1, Fgfr2 and Fgfr3. This represents the first evidence that vitreous-initiated signaling cascades, independent of FGFR signaling, can drive mammalian lens fiber cell differentiation, when freed from repression by PTEN.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Cristalino/embriologia , PTEN Fosfo-Hidrolase/deficiência , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética
2.
Allergy ; 76(1): 302-313, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32640045

RESUMO

BACKGROUND: Atopic dermatitis (AD) patients are often colonized with Staphylococcus aureus, and staphylococcal biofilms have been reported on adult AD skin lesions. The commensal S epidermidis can antagonize S aureus, although its role in AD is unclear. We sought to characterize S aureus and S epidermidis colonization and biofilm propensity and determine their associations with AD severity, barrier function, and epidermal gene expression in the first US early-life cohort of children with AD, the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children (MPAACH). METHODS: The biofilm propensity of staphylococcal isolates was assessed by crystal violet assays. Gene expression of filaggrin and antimicrobial alarmins S100A8 and S100A9 was measured in keratinocyte RNA extracted from skin tape strips. Staphylococcal biofilms sampled from MPAACH skin were visualized using scanning electron microscopy. RESULTS: Sixty-two percent of staphylococcal isolates (sampled from 400 subjects) formed moderate/strong biofilms. Sixty-eight percent of subjects co-colonized with both staphylococcal species exhibited strains that formed cooperative mixed-species biofilms. Scanning electron microscopy verified the presence of staphylococcal biofilms on the skin of MPAACH children. Staphylococcus aureus strains showing higher relative biofilm propensity compared with S epidermidis were associated with increased AD severity (P = .03) and increased lesional and nonlesional transepidermal water loss (P = .01, P = .03). CONCLUSIONS: Our data suggest a pathogenic role for S aureus biofilms in AD. We found that strain-level variation in staphylococcal isolates governs the interactions between S epidermidis and S aureus and that the balance between these two species, and their biofilm propensity, has important implications for AD.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Adulto , Biofilmes , Criança , Proteínas Filagrinas , Humanos , Pele , Staphylococcus aureus , Staphylococcus epidermidis/genética
3.
J Clin Neurophysiol ; 39(3): 240-246, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255008

RESUMO

PURPOSE: Magnetoencephalography (MEG) defines the spike-generating zone and provides targets for invasive monitoring with stereotactic electroencephalography. This retrospective, blinded, cross-sectional study determined whether MEG virtual sensors could identify hippocampal epileptiform activity. METHODS: Using MEG beamformer analysis, virtual sensors were manually placed in bilateral hippocampi and corresponding virtual sensor waveforms were analyzed for the presence of epileptiform activity. These findings were compared with hippocampal stereotactic electroencephalography in the same patients. Concordance was determined using sensitivity and specificity. RESULTS: Thirty patients (mean age 12.5 ± 5.9 years) and 35 hippocampi were included. Patients were also placed into subgroups based on conventional MEG analysis: temporal (n = 19), extratemporal (n = 10), and normal (n = 1). Overall, sensitivity and specificity were 57.9% and 50.0%, respectively (n = 35). Patients with temporal sources based on conventional MEG analysis had sensitivity and specificity of 80.0% and 36.4%, respectively (n = 21). Those with extratemporal sources based on conventional MEG had sensitivity and specificity of 42.9% and 80.0%, respectively (n = 12). CONCLUSIONS: When grouped by conventional MEG analysis, virtual sensors can be useful to confirm mesial temporal dipoles seen with conventional analysis. SIGNIFICANCE: This work may help support the use of MEG for the detection of epileptiform activity in the hippocampus and influence the planning of invasive electrode placement.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Adolescente , Criança , Estudos Transversais , Hipocampo , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA