Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(5): 3179-3192, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38491912

RESUMO

BACKGROUND: With the availability of disease-modifying therapies for Alzheimer's disease (AD), it is important for clinicians to have tests to aid in AD diagnosis, especially when the presence of amyloid pathology is a criterion for receiving treatment. METHODS: High-throughput, mass spectrometry-based assays were used to measure %p-tau217 and amyloid beta (Aß)42/40 ratio in blood samples from 583 individuals with suspected AD (53% positron emission tomography [PET] positive by Centiloid > 25). An algorithm (PrecivityAD2 test) was developed using these plasma biomarkers to identify brain amyloidosis by PET. RESULTS: The area under the receiver operating characteristic curve (AUC-ROC) for %p-tau217 (0.94) was statistically significantly higher than that for p-tau217 concentration (0.91). The AUC-ROC for the PrecivityAD2 test output, the Amyloid Probability Score 2, was 0.94, yielding 88% agreement with amyloid PET. Diagnostic performance of the APS2 was similar by ethnicity, sex, age, and apoE4 status. DISCUSSION: The PrecivityAD2 blood test showed strong clinical validity, with excellent agreement with brain amyloidosis by PET.


Assuntos
Algoritmos , Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Encéfalo , Espectrometria de Massas , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Peptídeos beta-Amiloides/sangue , Feminino , Masculino , Proteínas tau/sangue , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Idoso , Fragmentos de Peptídeos/sangue , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Biomarcadores/sangue , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Curva ROC
2.
ArXiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38584618

RESUMO

Myocardial perfusion imaging using single-photon emission computed tomography (SPECT), or myocardial perfusion SPECT (MPS) is a widely used clinical imaging modality for the diagnosis of coronary artery disease. Current clinical protocols for acquiring and reconstructing MPS images are similar for most patients. However, for patients with outlier anatomical characteristics, such as large breasts, images acquired using conventional protocols are often sub-optimal in quality, leading to degraded diagnostic accuracy. Solutions to improve image quality for these patients outside of increased dose or total acquisition time remain challenging. Thus, there is an important need for new methodologies to improve image quality for such patients. One approach to improving this performance is adapting the image acquisition protocol specific to each patient. For this study, we first designed and implemented a personalized patient-specific protocol-optimization strategy, which we term precision SPECT (PRESPECT). This strategy integrates ideal observer theory with the constraints of tomographic reconstruction to optimize the acquisition time for each projection view, such that MPS defect detection performance is maximized. We performed a clinically realistic simulation study on patients with outlier anatomies on the task of detecting perfusion defects on various realizations of low-dose scans by an anthropomorphic channelized Hotelling observer. Our results show that using PRESPECT led to improved performance on the defect detection task for the considered patients. These results provide evidence that personalization of MPS acquisition protocol has the potential to improve defect detection performance, motivating further research to design optimal patient-specific acquisition and reconstruction protocols for MPS, as well as developing similar approaches for other medical imaging modalities.

3.
J Nucl Med ; 65(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360049

RESUMO

Reliable performance of PET segmentation algorithms on clinically relevant tasks is required for their clinical translation. However, these algorithms are typically evaluated using figures of merit (FoMs) that are not explicitly designed to correlate with clinical task performance. Such FoMs include the Dice similarity coefficient (DSC), the Jaccard similarity coefficient (JSC), and the Hausdorff distance (HD). The objective of this study was to investigate whether evaluating PET segmentation algorithms using these task-agnostic FoMs yields interpretations consistent with evaluation on clinically relevant quantitative tasks. Methods: We conducted a retrospective study to assess the concordance in the evaluation of segmentation algorithms using the DSC, JSC, and HD and on the tasks of estimating the metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of primary tumors from PET images of patients with non-small cell lung cancer. The PET images were collected from the American College of Radiology Imaging Network 6668/Radiation Therapy Oncology Group 0235 multicenter clinical trial data. The study was conducted in 2 contexts: (1) evaluating conventional segmentation algorithms, namely those based on thresholding (SUVmax40% and SUVmax50%), boundary detection (Snakes), and stochastic modeling (Markov random field-Gaussian mixture model); (2) evaluating the impact of network depth and loss function on the performance of a state-of-the-art U-net-based segmentation algorithm. Results: Evaluation of conventional segmentation algorithms based on the DSC, JSC, and HD showed that SUVmax40% significantly outperformed SUVmax50%. However, SUVmax40% yielded lower accuracy on the tasks of estimating MTV and TLG, with a 51% and 54% increase, respectively, in the ensemble normalized bias. Similarly, the Markov random field-Gaussian mixture model significantly outperformed Snakes on the basis of the task-agnostic FoMs but yielded a 24% increased bias in estimated MTV. For the U-net-based algorithm, our evaluation showed that although the network depth did not significantly alter the DSC, JSC, and HD values, a deeper network yielded substantially higher accuracy in the estimated MTV and TLG, with a decreased bias of 91% and 87%, respectively. Additionally, whereas there was no significant difference in the DSC, JSC, and HD values for different loss functions, up to a 73% and 58% difference in the bias of the estimated MTV and TLG, respectively, existed. Conclusion: Evaluation of PET segmentation algorithms using task-agnostic FoMs could yield findings discordant with evaluation on clinically relevant quantitative tasks. This study emphasizes the need for objective task-based evaluation of image segmentation algorithms for quantitative PET.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos , Estudos Multicêntricos como Assunto , Ensaios Clínicos como Assunto
4.
IEEE Trans Radiat Plasma Med Sci ; 8(4): 439-450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38766558

RESUMO

There is an important need for methods to process myocardial perfusion imaging (MPI) single-photon emission computed tomography (SPECT) images acquired at lower-radiation dose and/or acquisition time such that the processed images improve observer performance on the clinical task of detecting perfusion defects compared to low-dose images. To address this need, we build upon concepts from model-observer theory and our understanding of the human visual system to propose a detection task-specific deep-learning-based approach for denoising MPI SPECT images (DEMIST). The approach, while performing denoising, is designed to preserve features that influence observer performance on detection tasks. We objectively evaluated DEMIST on the task of detecting perfusion defects using a retrospective study with anonymized clinical data in patients who underwent MPI studies across two scanners (N = 338). The evaluation was performed at low-dose levels of 6.25%, 12.5%, and 25% and using an anthropomorphic channelized Hotelling observer. Performance was quantified using area under the receiver operating characteristics curve (AUC). Images denoised with DEMIST yielded significantly higher AUC compared to corresponding low-dose images and images denoised with a commonly used task-agnostic deep learning-based denoising method. Similar results were observed with stratified analysis based on patient sex and defect type. Additionally, DEMIST improved visual fidelity of the low-dose images as quantified using root mean squared error and structural similarity index metric. A mathematical analysis revealed that DEMIST preserved features that assist in detection tasks while improving the noise properties, resulting in improved observer performance. The results provide strong evidence for further clinical evaluation of DEMIST to denoise low-count images in MPI SPECT.

5.
J Nucl Med ; 65(8): 1210-1216, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936974

RESUMO

Homeobox 13 (HOXB13) is an oncogenic transcription factor that directly regulates expression of folate hydrolase 1, which encodes prostate-specific membrane antigen (PSMA). HOXB13 is expressed in primary and metastatic prostate cancers (PCs) and promotes androgen-independent PC growth. Since HOXB13 promotes resistance to androgen receptor (AR)-targeted therapies and regulates the expression of folate hydrolase 1, we investigated whether SUVs on PSMA PET would correlate with HOXB13 expression. Methods: We analyzed 2 independent PC patient cohorts who underwent PSMA PET/CT for initial staging or for biochemical recurrence. In the discovery cohort, we examined the relationship between HOXB13, PSMA, and AR messenger RNA (mRNA) expression in prostate biopsy specimens from 179 patients who underwent PSMA PET/CT with 18F-piflufolastat. In the validation cohort, we confirmed the relationship between HOXB13, PSMA, and AR by comparing protein expression in prostatectomy and lymph node (LN) sections from 19 patients enrolled in 18F-rhPSMA-7.3 PET clinical trials. Correlation and association analyses were also used to confirm the relationship between the markers, LN positivity, and PSMA PET SUVs. Results: We observed a significant correlation between PSMA and HOXB13 mRNA (P < 0.01). The association between HOXB13 and 18F-piflufolastat SUVs was also significant (SUVmax, P = 0.0005; SUVpeak, P = 0.0006). Likewise, the PSMA SUVmax was significantly associated with the expression of HOXB13 protein in the 18F-rhPSMA-7.3 PET cohort (P = 0.008). Treatment-naïve patients with LN metastases demonstrated elevated HOXB13 and PSMA levels in their tumors as well as higher PSMA tracer uptake and low AR expression. Conclusion: Our findings demonstrate that HOXB13 correlates with PSMA expression and PSMA PET SUVs at the mRNA and protein levels. Our study suggests that the PSMA PET findings may reflect oncogenic HOXB13 transcriptional activity in PC, thus potentially serving as an imaging biomarker for more aggressive disease.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Proteínas de Homeodomínio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Humanos , Proteínas de Homeodomínio/metabolismo , Masculino , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Idoso , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA