Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(2): 959-966, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33428406

RESUMO

Monolayer semiconducting transition metal dichalcogenides are a strongly emergent platform for exploring quantum phenomena in condensed matter, building novel optoelectronic devices with enhanced functionalities. Because of their atomic thickness, their excitonic optical response is highly sensitive to their dielectric environment. In this work, we explore the optical properties of monolayer thick MoSe2 straddling domain wall boundaries in periodically poled LiNbO3. Spatially resolved photoluminescence experiments reveal spatial sorting of charge and photogenerated neutral and charged excitons across the boundary. Our results reveal evidence for extremely large in-plane electric fields of ≃4000 kV/cm at the domain wall whose effect is manifested in exciton dissociation and routing of free charges and trions toward oppositely poled domains and a nonintuitive spatial intensity dependence. By modeling our result using drift-diffusion and continuity equations, we obtain excellent qualitative agreement with our observations and have explained the observed spatial luminescence modulation using realistic material parameters.

2.
Nano Lett ; 21(2): 1040-1046, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33433221

RESUMO

We demonstrate electrostatic switching of individual, site-selectively generated matrices of single photon emitters (SPEs) in MoS2 van der Waals heterodevices. We contact monolayers of MoS2 in field-effect devices with graphene gates and hexagonal boron nitride as the dielectric and graphite as bottom gates. After the assembly of such gate-tunable heterodevices, we demonstrate how arrays of defects, that serve as quantum emitters, can be site-selectively generated in the monolayer MoS2 by focused helium ion irradiation. The SPEs are sensitive to the charge carrier concentration in the MoS2 and switch on and off similar to the neutral exciton in MoS2 for moderate electron doping. The demonstrated scheme is a first step for producing scalable, gate-addressable, and gate-switchable arrays of quantum light emitters in MoS2 heterostacks.

3.
J Phys Chem Lett ; 13(44): 10291-10296, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36305703

RESUMO

We utilize cavity-enhanced extinction spectroscopy to directly quantify the optical absorption of defects in MoS2 generated by helium ion bombardment. We achieve hyperspectral imaging of specific defect patterns with a detection limit below 0.01% extinction, corresponding to a detectable defect density below 1 × 1011 cm-2. The corresponding spectra reveal a broad subgap absorption, being consistent with theoretical predictions related to sulfur vacancy-bound excitons in MoS2. Our results highlight cavity-enhanced extinction spectroscopy as efficient means for the detection of optical transitions in nanoscale thin films with weak absorption, applicable to a broad range of materials.

4.
Nat Commun ; 12(1): 3822, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158488

RESUMO

For two-dimensional (2D) layered semiconductors, control over atomic defects and understanding of their electronic and optical functionality represent major challenges towards developing a mature semiconductor technology using such materials. Here, we correlate generation, optical spectroscopy, atomic resolution imaging, and ab initio theory of chalcogen vacancies in monolayer MoS2. Chalcogen vacancies are selectively generated by in-vacuo annealing, but also focused ion beam exposure. The defect generation rate, atomic imaging and the optical signatures support this claim. We discriminate the narrow linewidth photoluminescence signatures of vacancies, resulting predominantly from localized defect orbitals, from broad luminescence features in the same spectral range, resulting from adsorbates. Vacancies can be patterned with a precision below 10 nm by ion beams, show single photon emission, and open the possibility for advanced defect engineering of 2D semiconductors at the ultimate scale.

5.
ACS Nano ; 14(12): 16663-16671, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33196167

RESUMO

Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS2) interface. A 10× larger photocurrent is extracted at the EG/MoS2 interface when compared to the metal (Ti/Au)/MoS2 interface. This is supported by semi-local density functional theory (DFT), which predicts the Schottky barrier at the EG/MoS2 interface to be ∼2× lower than that at Ti/MoS2. We provide a direct visualization of a 2D material Schottky barrier through combination of angle-resolved photoemission spectroscopy with spatial resolution selected to be ∼300 nm (nano-ARPES) and DFT calculations. A bending of ∼500 meV over a length scale of ∼2-3 µm in the valence band maximum of MoS2 is observed via nano-ARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas.

6.
Sci Rep ; 7(1): 12383, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959034

RESUMO

We demonstrate the reduction of the inhomogeneous linewidth of the free excitons in atomically thin transition metal dichalcogenides (TMDCs) MoSe2, WSe2 and MoS2 by encapsulation within few nanometre thick hBN. Encapsulation is shown to result in a significant reduction of the 10 K excitonic linewidths down to ∼3.5 meV for n-MoSe2, ∼5.0 meV for p-WSe2 and ∼4.8 meV for n-MoS2. Evidence is obtained that the hBN environment effectively lowers the Fermi level since the relative spectral weight shifts towards the neutral exciton emission in n-doped TMDCs and towards charged exciton emission in p-doped TMDCs. Moreover, we find that fully encapsulated MoS2 shows resolvable exciton and trion emission even after high power density excitation in contrast to non-encapsulated materials. Our findings suggest that encapsulation of mechanically exfoliated few-monolayer TMDCs within nanometre thick hBN dramatically enhances optical quality, producing ultra-narrow linewidths that approach the homogeneous limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA