Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 196(4): 1049-1060, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34309705

RESUMO

Fast-growing and slow-growing plant species are suggested to show integrated economics spectrums and the tradeoffs of fast growth are predicted to emerge as susceptibility to herbivory and resource competition. We tested if these predictions also hold for fast-growing and slow-growing genotypes within a silver birch, Betula pendula population. We exposed cloned saplings of 17 genotypes with slow, medium or fast height growth to reduced insect herbivory, using an insecticide, and to increasing resource competition, using naturally varying field plot grass cover. We measured shoot and root growth, ectomycorrhizal (EM) fungal production using ergosterol analysis and soil N transfer to leaves using 15N-labelled pulse of NH4+. We found that fast-growing genotypes grew on average 78% faster, produced 56% and 16% more leaf mass and ergosterol, and showed 78% higher leaf N uptake than slow-growing genotypes. The insecticide decreased leaf damage by 83% and increased shoot growth, leaf growth and leaf N uptake by 38%, 52% and 76%, without differences between the responses of fast-growing and slow-growing genotypes, whereas root mass decreased with increasing grass cover. Shoot and leaf growth of fast-growing genotypes decreased and EM fungal production of slow-growing genotypes increased with increasing grass cover. Our results suggest that fast growth is genotypically associated with higher allocation to EM fungi, better soil N capture and greater leaf production, and that the tradeoff of fast growth is sensitivity to competition, but not to insect herbivory. EM fungi may have a dual role: to support growth of fast-growing genotypes under low grass competition and to maintain growth of slow-growing genotypes under intensifying competition.


Assuntos
Betula , Árvores , Betula/genética , Genótipo , Herbivoria , Folhas de Planta
2.
Ecology ; 99(5): 1227-1235, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29411866

RESUMO

Plants enhance N use efficiency by resorbing N from senescing leaves. This can affect litter N mineralization rate due to the C:N-ratio requirements of microbial growth. We examined genotypic links between leaf N resorption and litter mineralization by collecting leaves and litter from 19 Betula pendula genotypes and following the N release of litter patches on forest ground. We found significant genotypic variation for N resorption efficiency, litter N concentration, cumulative three-year patch N-input and litter N release with high broad-sense heritabilities (H2  = 0.28-0.65). The genotype means of N resorption efficiency varied from 46% to 65% and correlated negatively with the genotype means of litter N concentration, cumulative patch N-input and litter N release. NH4+ yield under patches had a positive genotypic correlation with the cumulative patch N-input. During the first year of litter decomposition, genotypes varied from N immobilization (max 2.71 mg/g dry litter) to N release (max 1.41 mg/g dry litter), creating a genotypic tradeoff between the N conserved by resorption and the N available for root uptake during the growing season. We speculate that this tradeoff is one likely reason for the remarkably wide genotypic range of N resorption efficiencies in our birch population.


Assuntos
Betula , Nitrogênio , Genótipo , Folhas de Planta/genética , Estações do Ano
3.
Glob Chang Biol ; 24(2): e545-e559, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29055160

RESUMO

The acclimation capacity of leading edge tree populations is crucially important in a warming climate. Theoretical considerations suggest that adaptation through genetic change is needed, but this may be a slow process. Both positive and catastrophic outcomes have been predicted, while empirical studies have lagged behind theory development. Here we present results of a 30-year study of 55,000 Scots pine (Pinus sylvestris) trees, planted in 15 common gardens in three consecutive years near and beyond the present Scots pine tree line. Our results show that, contrary to earlier predictions, even long-distance transfers to the North can be successful when soil fertility is high. This suggests that present northern populations have a very high acclimation capacity. We also found that while temperature largely controls Scots pine growth, soil nutrient availability plays an important role-in concert with interpopulation genetic variation-in Scots pine survival and fitness in tree line conditions. These results suggest that rapid range expansions and substantial growth enhancements of Scots pine are possible in fertile sites as seed production and soil nutrient mineralization are both known to increase under a warming climate. Finally, as the ontogenetic pattern of tree mortality was highly site specific and unpredictable, our results emphasize the need for long-term field trials when searching for the factors that control fitness of trees in the variable edaphic and climatic conditions of the far North.


Assuntos
Aclimatação , Ecossistema , Pinus sylvestris/fisiologia , Temperatura , Mudança Climática , Demografia , Solo
4.
PLoS One ; 16(5): e0251625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010344

RESUMO

Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.


Assuntos
Betula/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Betula/citologia , Mudança Climática , Células Epidérmicas/citologia , Finlândia , Groenlândia , Temperatura Alta , Meteorologia , Folhas de Planta/citologia , Polônia , Estações do Ano
5.
Nat Commun ; 11(1): 2529, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439857

RESUMO

Climate warming is anticipated to make high latitude ecosystems stronger C sinks through increasing plant production. This effect might, however, be dampened by insect herbivores whose damage to plants at their background, non-outbreak densities may more than double under climate warming. Here, using an open-air warming experiment among Subarctic birch forest field layer vegetation, supplemented with birch plantlets, we show that a 2.3 °C air and 1.2 °C soil temperature increase can advance the growing season by 1-4 days, enhance soil N availability, leaf chlorophyll concentrations and plant growth up to 400%, 160% and 50% respectively, and lead up to 122% greater ecosystem CO2 uptake potential. However, comparable positive effects are also found when insect herbivory is reduced, and the effect of warming on C sink potential is intensified under reduced herbivory. Our results confirm the expected warming-induced increase in high latitude plant growth and CO2 uptake, but also reveal that herbivorous insects may significantly dampen the strengthening of the CO2 sink under climate warming.


Assuntos
Betula/metabolismo , Sequestro de Carbono , Florestas , Aquecimento Global , Herbivoria/fisiologia , Insetos/fisiologia , Animais , Betula/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Clima Frio , Ecossistema , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Solo/química , Tempo (Meteorologia)
6.
Planta ; 230(2): 419-27, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19484475

RESUMO

We studied the effects of slightly elevated temperature (T), O(3) concentration (O(3)) and their combination (T + O(3)) on the antioxidant defense, gas exchange and total leaf area of Betula pendula saplings in field conditions. During the second year of the experiment, T enhanced the total leaf area, net photosynthesis (P (n)) and maximum capacity of carboxylation, redox state of ascorbate and total antioxidant capacity in the apoplast. O(3) did not affect the total leaf area, but P (n) was slightly and g (s) significantly reduced. The saplings responded to elevated O(3) level by closing the stomata and by developing leaves with a lower leaf area per mass, rather than by accumulating ascorbate in the apoplast. The effects of T and O(3) on total leaf area and P (n) were counteractive. Elevated O(3) reduced the saplings' ability to utilize the warmer growth environment by increasing the stomatal limitation for photosynthesis and by reducing the redox state of ascorbate in the apoplast in the combination treatment as compared to T alone.


Assuntos
Antioxidantes/metabolismo , Betula/efeitos dos fármacos , Betula/metabolismo , Gases/metabolismo , Temperatura Alta , Ozônio/farmacologia , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
7.
Front Plant Sci ; 8: 1074, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694813

RESUMO

Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula. Broad-sense heritability (H2) and coefficient of genotypic variation (CVG) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H2 and CVG for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.

8.
PLoS One ; 10(1): e0116806, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25622034

RESUMO

Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary changes in mean decomposition rate are possible.


Assuntos
Betula/metabolismo , Folhas de Planta/metabolismo , Betula/genética , Evolução Molecular , Genótipo , Herbivoria , Inseticidas/farmacologia , Metaboloma , Fenóis/metabolismo , Folhas de Planta/genética , Metabolismo Secundário , Terpenos/metabolismo
9.
F1000Res ; 3: 34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24715977

RESUMO

A number of recent studies have shown that intraspecific genetic variation of plants may have a profound effect on the herbivorous communities which depend on them. However less is known about the relative importance of intraspecific variation compared to other ecological factors, for example environmental variation or the effects of herbivore damage. We randomly selected 22 Betula pendula genotypes from a local population (< 0.9 ha), cloned them and planted cloned seedlings on two study sites separated at a regional scale (distance between sites about 30 km) to examine an insect community of 23-27 species on these genotypes. B. pendula genotypes did not differ in their species richness, but the total mean abundance and the structure of the insect herbivore community was significantly affected by the genotype, which could account for up to 27% of the total variation in community structure. B. pendula genotype accounted for two to four times more variation in the arthropod community structure than did environmental (block) variation on a local scale, while on a regional scale, genotypic and environmental (site) variation accounted for 4-14% of the arthropod community structure. The genetic effects were modified by environmental variation on both a local and regional scale over one study year, and locally, the largest part of the variation (38%) could be explained by the genotype × environment (block) interactions. Suppression of insect herbivores during one growing season led to changed arthropod community structure in the following growing season, but this effect was minimal and could explain only 4% of the total variation in insect community structure. Our results suggest that both genetic and environmental factors are important determinants of the community structure of herbivorous insects. Together these mechanisms appear to maintain the high diversity of insects in B. pendula forest ecosystems.

10.
Oecologia ; 152(4): 707-14, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17361453

RESUMO

Ecosystem processes, such as plant litter decomposition, are known to be partly genetically determined, but the magnitude of genetic variation within local populations is still poorly known. We used micropropagated field-grown saplings of 19 Betula pendula genotypes, representing genetic variation in a natural birch population, to examine (1) whether genotype can explain variation in leaf litter decomposition within a local plant population, and (2) whether genotypic variation in litter decomposition is associated with genotypic variation in other plant attributes. We found that a local B. pendula population can have substantial genotypic variation in leaf litter mass loss at the early stages of the decomposition process and that this variation can be associated with genotypic variation in herbivore resistance and leaf concentrations of soluble proteins and total nitrogen (N). Our results are among the first to show that fundamental ecosystem processes can be significantly affected by truly intraspecific genetic variation of a plant species.


Assuntos
Betula/química , Betula/genética , Genótipo , Folhas de Planta/química , Folhas de Planta/genética , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA