Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(18)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903251

RESUMO

Refractory materials hold great promise to develop functional multilayer coating for extreme environments and temperature applications but require high temperature and complex synthesis to overcome their strong atomic bonding and form a multilayer structure. Here, a spontaneous reaction producing sophisticated multilayer refractory carbide coatings on carbon fiber (CF) is reported. This approach utilizes a relatively low-temperature (950 °C) molten-salt process for forming refractory carbides. The reaction of titanium (Ti), chromium (Cr), and CF yields a complex, high-quality multilayer carbide coating composed of 1) Cr carbide (Cr3C2), 2) Ti carbide, and 3) Cr3C2 layers. The layered sequence arises from a difference in metal dissolutions, reactions, and diffusion rates in the salt media. The multilayer-coated CFs act as a permeable oxidation barrier with no crystalline degradation of the CFs after extreme temperature (1,200 °C) and environment (oxyacetylene flame) exposure. The synthesis of high-quality multilayer refractory coating in a fast, efficient, easy, and clean manner may answer the need for industrial applications that develop cheap and reliable extreme environment protection barriers.

2.
Opt Express ; 28(2): 1197-1205, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121834

RESUMO

In this work, laser-induced breakdown spectroscopy (LIBS) of gaseous ammonia (NH3) molecules on- and off-resonant vibrational excitation was studied in open air. A wavelength-tunable, continuous wave (CW), carbon dioxide (CO2) laser tuned at a resonant absorption peak (9.219 µm) within the infrared radiation (IR) range was used to resonantly excite the vibration of the N-H wagging mode of ammonia molecules. A pulsed Nd:YAG laser (1064 nm, 15 ns) was used to break down the ammonia gas for plasma imaging and spectral measurements. In this study, plasmas generated with the ammonia molecules without additional CO2 laser beam irradiation and with additional CO2 laser beam irradiation with the wavelengths on- and off-resonant vibrational excitation of ammonia molecules were investigated and referred as LIBS, LIBS-RE-ON and LIBS-RE-OFF, respectively. The experimental results showed that the temporal and spatial evolution as well as electron temperature and density of plasmas induced with LIBS and LIBS-RE-OFF were consistent but differed from LIBS-RE-ON. Compared with LIBS and LIBS-RE-OFF, plasmas in LIBS-RE-ON showed larger spatial expansion and enhanced emission after a delay time of 1 µs in this study, as well as significantly enhanced electron temperature by ∼ 64%. Time-resolved electron temperatures and densities showed that the emission signal enhancement in LIBS-RE-ON can be primarily attributed to the electron temperature enhancement. Signal enhancement in LIBS indicated improved detection sensitivity. This study could inspire future works on LIBS for gas detection with improved sensitivity and selectivity probably by using ultrafast/intense laser-induced molecular breakdown/ionization with resonant vibrational excitation of molecules.

3.
Nanotechnology ; 31(40): 405707, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32544903

RESUMO

Optimized multi-wall carbon nanotubes (MWNT) suspensions in aqueous solution have been obtained by joint use of ultrasonification and surfactant. A simple experimental procedure has been established to efficiently evaluate the dependence of the surfactant concentration on the MWNT concentration stable in suspension. The study of three different surfactants and MWNT provided by three suppliers showed that a threshold surfactant concentration exists above which the MWNT concentration is maximum. Furthermore, it is demonstrated that the maximum MWNT concentration achievable varies from 0.50 to 7.5 g l-1 depending mainly on quality of the MWNT determined by raman spectroscopy analysis.

4.
Nano Lett ; 18(3): 2021-2032, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29351373

RESUMO

Single-crystal transition metal dichalcogenides (TMDs) and TMD-based heterojunctions have recently attracted significant research and industrial interest owing to their intriguing optical and electrical properties. However, the lack of a simple, low-cost, environmentally friendly, synthetic method and a poor understanding of the growth mechanism post a huge challenge to implementing TMDs in practical applications. In this work, we developed a novel approach for direct formation of high-quality, monolayer and few-layer MoS2 single crystal domains via a single-step rapid thermal processing of a sandwiched reactor with sulfur and molybdenum (Mo) film in a confined reaction space. An all-solid-phase growth mechanism was proposed and experimentally/theoretically evidenced by analyzing the surface potential and morphology mapping. Compared with the conventional chemical vapor deposition approaches, our method involves no complicated gas-phase reactant transfer or reactions and requires very small amount of solid precursors [e.g., Mo (∼3 µg)], no carrier gas, no pretreatment of the precursor, no complex equipment design, thereby facilitating a simple, low-cost, and environmentally friendly growth. Moreover, we examined the symmetry, defects, and stacking phase in as-grown MoS2 samples using simultaneous second-harmonic-/sum-frequency-generation (SHG/SFG) imaging. For the first time, we observed that the SFG (peak intensity/position) polarization can be used as a sensitive probe to identify the orientation of TMDs' crystallographic axes. Furthermore, we fabricated ferroelectric programmable Schottky junction devices via local domain patterning using the as-grown, single-crystal monolayer MoS2, revealing their great potential in logic and optoelectronic applications. Our strategy thus provides a simple, low-cost, and scalable path toward a wide variety of TMD single crystal growth and novel functional device design.

5.
Opt Express ; 25(22): 27000-27007, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092181

RESUMO

Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al2O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al2O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O2 chemistry in air.

6.
Opt Lett ; 39(10): 3034-7, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978266

RESUMO

In this study, the degree of conversion (DC) of an acrylic-based resin (IP-L 780) in two-photon polymerization (TPP) is systematically investigated via Raman microspectroscopy. A quantitative relationship between TPP laser parameters and the DC of the resin is established. Nonlinear increase in DC with increased laser average power is observed. The resin DC is more sensitive to the laser average power than the laser writing speed. Nanoindentation was employed to correlate the results obtained from Raman microspectroscopy with the mechanical properties of microstructures fabricated by TPP. At constant writing speeds, microstructures fabricated with high laser average powers possess high hardness and high reduced Young's modulus (RYM), indicating high DCs. The results are in line with high DCs measured under the same TPP parameters in Raman microspectroscopy. Raman microspectroscopy is proved to be an effective, rapid, and nondestructive method characterizing microstructures fabrication by TPP.

7.
J Exp Biol ; 217(Pt 19): 3465-73, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274324

RESUMO

The extent of damage to crop plants from pest insects depends on the foraging behaviour of the insect's feeding stage. Little is known, however, about the genetic and molecular bases of foraging behaviour in phytophagous pest insects. The foraging gene (for), a candidate gene encoding a PKG-I, has an evolutionarily conserved function in feeding strategies. Until now, for had never been studied in Lepidoptera, which includes major pest species. The cereal stem borer Sesamia nonagrioides is therefore a relevant species within this order with which to study conservation of and polymorphism in the for gene, and its role in foraging - a behavioural trait that is directly associated with plant injuries. Full sequencing of for cDNA in S. nonagrioides revealed a high degree of conservation with other insect taxa. Activation of PKG by a cGMP analogue increased larval foraging activity, measured by how frequently larvae moved between food patches in an actimeter. We found one non-synonymous allelic variation in a natural population that defined two allelic variants. These variants presented significantly different levels of foraging activity, and the behaviour was positively correlated to gene expression levels. Our results show that for gene function is conserved in this species of Lepidoptera, and describe an original case of a single nucleotide polymorphism associated with foraging behaviour variation in a pest insect. By illustrating how variation in this single gene can predict phenotype, this work opens new perspectives into the evolutionary context of insect adaptation to plants, as well as pest management.


Assuntos
Comportamento Apetitivo/fisiologia , Locomoção , Mariposas/genética , Alelos , Animais , Sequência de Bases , GMP Cíclico/análogos & derivados , GMP Cíclico/fisiologia , Larva/fisiologia , Dados de Sequência Molecular , Mariposas/fisiologia , Fenótipo , Polimorfismo Genético
8.
Mol Phylogenet Evol ; 65(3): 855-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22939903

RESUMO

Thanks to the recent development of integrative approaches that combine dated phylogenies with models of biogeographic evolution, it is becoming more feasible to assess the roles of dispersal and vicariance in creating complex patterns of geographical distribution. However, the historical biogeography of taxa with good dispersal abilities, like birds or flying insects, still remains largely unknown because of the lack of complete phylogenies accompanied by robust estimates of divergence times. In this study, we investigate the evolution and historical biogeography of the globally distributed pest genus Spodoptera (Lepidoptera: Noctuidae) using complete taxon sampling and an extensive set of analyses. Through the analysis of a combined morphological and molecular dataset, we provide the first robust phylogenetic framework for this widespread and economically important group of moths. Historical biogeography approaches indicate that dispersal events have been the driving force in the biogeographic history of the group. One of the most interesting findings of this study is the probable occurrence of two symmetric long-distance dispersal events between the Afrotropical and the Neotropical region, which appear to have occurred in the late Miocene. Even more remarkably, our dated phylogenies reveal that the diversification of the clade that includes specialist grass feeders has followed closely the expansion of grasslands in the Miocene, similar to the adaptive radiation of specialist grazing mammals during the same period.


Assuntos
Distribuição Animal , Especiação Genética , Filogenia , Spodoptera/genética , Animais , Teorema de Bayes , Geografia , Poaceae , Análise de Sequência de DNA , Spodoptera/classificação
9.
Mol Ecol ; 20(5): 959-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21255170

RESUMO

As a result of an intense host-parasite evolutionary arms race, parasitic wasps frequently display high levels of specialization on very few host species. For instance, in braconid wasps very few generalist species have been described. However, within this family, Cotesia sesamiae is a generalist species that is widespread in sub-Saharan Africa and develops on several lepidopteran hosts. In this study, we tested the hypothesis that C. sesamiae may be a cryptic specialist when examined at the intraspecific level. We sequenced exon 2 of CrV1, a gene of the symbiotic polyDNAvirus that is integrated into the wasp genome and is associated with host immune suppression. We found that CrV1 genotype was more closely associated with the host in which the parasitoid developed than any abiotic environmental factor tested. We also tested a correlation between CrV1 genotype and an infection with Wolbachia bacteria, which are known for their ability to induce reproductive isolation. The Wolbachia bacteria infection polymorphism was also found as a major factor explaining the genetic structure of CrV1, and, in addition, the best model explaining CrV1 genetic structure involved an interaction between Wolbachia infection and host species. We suggest that Wolbachia could act as an agent capable of maintaining advantageous alleles for host specialization in different populations of C. sesamiae. This mechanism could be applicable to other insect models because of the high prevalence of Wolbachia in insects.


Assuntos
Interações Hospedeiro-Patógeno , Polydnaviridae/genética , Vespas/microbiologia , Vespas/virologia , Wolbachia/fisiologia , África Subsaariana , Animais , DNA Viral/genética , Genes Virais , Genoma de Inseto , Genótipo , Interações Hospedeiro-Parasita , Larva/parasitologia , Lepidópteros/parasitologia , Polimorfismo Genético , Análise de Sequência de DNA , Vespas/genética , Wolbachia/genética
10.
Bioengineering (Basel) ; 8(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821736

RESUMO

Biomaterials and their clinical application have become well known in recent years and progress in their manufacturing processes are essential steps in their technological advancement. Great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. One of the common impediments in the bioceramics and metallic porous implants for biomedical applications are their lack of mechanical strength. High-pressure processing can be a viable solution in obtaining porous biomaterials. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, corrosion rate and scaffold design are taken into consideration. The current review focuses on different manufacturing processes used for bioceramics, polymers and metals and their alloys in porous forms. Recent advances in the manufacturing technologies of porous ceramics by freeze isostatic pressure and hydrothermal processing are discussed in detail. Pressure as a parameter can be helpful in obtaining porous forms for biomaterials with increased mechanical strength.

11.
BMC Evol Biol ; 9: 185, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19653892

RESUMO

BACKGROUND: Bacteria of the genus Wolbachia are reproductive parasites widespread among arthropods. The most common effect arising from the presence of Wolbachia in a population is Cytoplasmic Incompatibility (CI), whereby postmating reproductive isolation occurs in crosses between an infected male and an uninfected female, or when a male is infected with a different strain of Wolbachia to that of the female (bidirectional CI). Previous theoretical models have demonstrated that bidirectional CI can contribute to the genetic divergence of populations in haploid and diploid organisms. However, haplodiploid organisms were not considered in these models even though they include Nasonia parasitoid wasps - the best example of the implication of Wolbachia in ongoing speciation. Moreover, previous work did not investigate inbreeding mating systems, which are frequently observed in arthropod species. RESULTS: We developed a stochastic two-island model which simulated three genetic scenarios, diploidy, haploidy, and haplodiploidy, with two CI phenotypes being considered for the latter: (1) male development of female progeny; and (2) mortality of fertilized eggs. We also investigated the effect of varying the proportion of sib mating. In the model each allopatric population was initially fixed for a single allele at a nuclear locus under positive selection and infected with one strain of Wolbachia. Each simulation presupposed that the two populations were fixed for a different allele and a different strain of Wolbachia. The degree of genetic differentiation observed in the locus under selection due to bidirectional CI was much lower for the two haplodiploid phenotypes than for either diploids or haploids. Furthermore, we demonstrated that sib-mating may compensate for the lower efficiency of bidirectional CI in haplodiploids by maintaining genetic divergence. CONCLUSION: Our model suggests that maintenance of genetic differentiation facilitated by Wolbachia is more likely to occur in diploids and haploids than in haplodiploids. However, increasing the level of sib-mating may compensate for the weak effect of bidirectional CI in haplodiploids. Our work therefore gives a potential explanation for why the haplodiploid Nasonia species, which are infected with bidirectionally incompatible Wolbachia strains and undergo sib-mating, have differentiated genetically and maintained this differentiation without premating isolation.


Assuntos
Modelos Genéticos , Seleção Genética , Vespas/genética , Wolbachia/fisiologia , Adaptação Biológica/genética , Alelos , Animais , Simulação por Computador , Diploide , Evolução Molecular , Feminino , Genoma de Inseto , Haploidia , Masculino , Reprodução/genética , Vespas/microbiologia
12.
Materials (Basel) ; 12(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817240

RESUMO

Aluminum matrix composites reinforced with carbon fibers or diamond particles have been fabricated by a powder metallurgy process and characterized for thermal management applications. Al/C composite is a nonreactive system (absence of chemical reaction between the metallic matrix and the ceramic reinforcement) due to the presence of an alumina layer on the surface of the aluminum powder particles. In order to achieve fully dense materials and to enhance the thermo-mechanical properties of the Al/C composite materials, a semi-liquid method has been carried out with the addition of a small amount of Al-Si alloys in the Al matrix. Thermal conductivity and coefficient of thermal expansion were enhanced as compared with Al/C composites without Al-Si alloys and the experimental values were close to the ones predicted by analytical models.

13.
J Hered ; 99(5): 491-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18552349

RESUMO

CrV1, a polydisperse DNA virus (polydnavirus or PDV) gene contributes to the suppression of host immunity in Cotesia genus parasitoids. Its molecular evolution was analyzed in relation to levels of resistance in the sympatric host species. Natural selection for nonsynonymous substitutions (positive Darwinian selection) was observed at specific amino acid sites among CrV1 variants; particularly, between parasitoid strains immune suppressive and nonimmune suppressive to the main resistant stem borer host, Busseola fusca. In Cotesia sesamiae, geographic distribution of CrV1 alleles in Kenya was correlated to the relative abundance of B. fusca. These results suggest that PDV genes evolve through natural selection and are genetically linked to factors of suppression of local host resistance. We discuss the forces driving the evolution of CrV1 and its use as a marker to understand parasitoid adaptation to host resistance in biological control.


Assuntos
Mariposas/imunologia , Mariposas/parasitologia , Polydnaviridae/genética , Vespas/virologia , Sequência de Aminoácidos , Animais , Evolução Biológica , Feminino , Genes Virais , Marcadores Genéticos , Genótipo , Interações Hospedeiro-Parasita/genética , Quênia , Larva/parasitologia , Larva/virologia , Masculino , Dados de Sequência Molecular , Mariposas/virologia , Controle Biológico de Vetores , Filogenia , Seleção Genética , Sorghum , Vespas/classificação , Vespas/fisiologia , Zea mays
14.
J Invertebr Pathol ; 99(2): 204-11, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18611402

RESUMO

A small isometric virus has been isolated from larvae of the Guatemala potato tuber moth, Tecia solanivora (Povolny), collected in Ecuador. It was designated the Anchilibi virus (AnchV). The non-enveloped viral particles have an estimated diameter of 32+/-2 nm. Three major proteins were found in virions, with estimated sizes of 102.0+/-2.1, 95.8+/-2.0 and 92.4+/-1.5 kDa for AnchV as determined by polyacrylamide gel electrophoresis. After denaturing agarose gel electrophoresis, the genome of AnchV appeared to be a tri-segmented single-stranded RNA with fragment sizes of 4.1+/-0.2, 2.8+/-0.2 and 1.65+/-0.2 kb. In addition to a high virulence towards its original host, AnchV also caused high mortality in larvae of two other potato tuber moth species, Phthorimaea operculella (Zeller) and Symmetrischema (tangolias) plaesiosema (Turner). Electron microscopy confirmed that AnchV replication occurs in the cell cytoplasm, mainly in vesicles. Several important characteristics exhibited by this virus differ from those reported for known families of insect viruses. Thus, AnchV might be member of a new taxonomic group.


Assuntos
Vírus de Insetos/classificação , Vírus de Insetos/genética , Vírus de Insetos/patogenicidade , Mariposas/virologia , RNA Viral/genética , Animais , Eletroforese em Gel de Poliacrilamida , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/patogenicidade
15.
Light Sci Appl ; 7: 17177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839522

RESUMO

In this work, we demonstrate that ultraviolet (UV) laser photolysis of hydrocarbon species alters the flame chemistry such that it promotes the diamond growth rate and film quality. Optical emission spectroscopy and laser-induced fluorescence demonstrate that direct UV laser irradiation of a diamond-forming combustion flame produces a large amount of reactive species that play critical roles in diamond growth, thereby leading to enhanced diamond growth. The diamond growth rate is more than doubled, and diamond quality is improved by 4.2%. Investigation of the diamond nucleation process suggests that the diamond nucleation time is significantly shortened and nondiamond carbon accumulation is greatly suppressed with UV laser irradiation of the combustion flame in a laser-parallel-to-substrate geometry. A narrow amorphous carbon transition zone, averaging 4 nm in thickness, is identified at the film-substrate interface area using transmission electron microscopy, confirming the suppression effect of UV laser irradiation on nondiamond carbon formation. The discovery of the advantages of UV photochemistry in diamond growth is of great significance for vastly improving the synthesis of a broad range of technically important materials.

16.
ACS Appl Mater Interfaces ; 9(42): 37340-37349, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28976178

RESUMO

Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm-1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

17.
Chempluschem ; 82(2): 186-189, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31961559

RESUMO

An ecofriendly chemical reduction of graphene oxide (GO) in water is reported. The reducing agent is an electrochemically reduced Keggin-type polyoxometalate (SiW12 O40 5- ). Moreover, this process leads to the fabrication of SiW12 @rGO nanocomposite. This nanohybrid exhibits an electrochemical response which combines high faradic and capacitive currents due to high coverage of polyoxometalates on the rGO sheets. Therefore this material has strong potentiality for energy storage.

18.
ACS Appl Mater Interfaces ; 9(25): 21539-21547, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28574714

RESUMO

In this study, we successfully developed a carbon dioxide (CO2)-laser-assisted metal-organic chemical vapor deposition (LMOCVD) approach to fast synthesis of high-quality gallium nitride (GaN) epilayers on Al2O3 [sapphire(0001)] substrates. By employing a two-step growth procedure, high crystallinity and smooth GaN epilayers with a fast growth rate of 25.8 µm/h were obtained. The high crystallinity was confirmed by a combination of techniques, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and atomic force microscopy. By optimizing growth parameters, the ∼4.3-µm-thick GaN films grown at 990 °C for 10 min showed a smooth surface with a root-mean-square surface roughness of ∼1.9 nm and excellent thickness uniformity with sharp GaN/substrate interfaces. The full-width at half-maximum values of the GaN(0002) X-ray rocking curve of 313 arcsec and the GaN(101̅2) X-ray rocking curve of 390 arcsec further confirmed the high crystallinity of the GaN epilayers. We also fabricated ultraviolet (UV) photodetectors based on the as-grown GaN layers, which exhibited a high responsivity of 0.108 A W-1 at 367 nm and a fast response time of ∼125 ns, demonstrating its high optical quality with potential in optoelectronic applications. Our strategy thus provides a simple and cost-effective means toward fast and high-quality GaN heteroepitaxy growth suitable for fabricating high-performance GaN-based UV detectors.

19.
Zookeys ; (682): 105-136, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769725

RESUMO

Many parasitoid species are subjected to strong selective pressures from their host, and their adaptive response may result in the formation of genetically differentiated populations, called host races. When environmental factors and reproduction traits prevent gene flow, host races become distinct species. Such a process has recently been documented within the Cotesia flavipes species complex, all of which are larval parasitoids of moth species whose larvae are stem borers of Poales. A previous study on the African species C. sesamiae, incorporating molecular, ecological and biological data on various samples, showed that a particular population could be considered as a distinct species, because it was specialized at both host (Sesamia nonagrioides) and plant (Typha domingensis) levels, and reproductively isolated from other C. sesamiae. Due to its potential for the biological control of S. nonagrioides, a serious corn pest in Mediterranean countries and even in Iran, we describe here Cotesia typhae Fernandez-Triana sp. n. The new species is characterized on the basis of morphological, molecular, ecological and geographical data, which proved to be useful for future collection and rapid identification of the species within the species complex. Fecundity traits and parasitism success on African and European S. nonagrioides populations, estimated by laboratory studies, are also included.

20.
Evol Appl ; 9(4): 596-607, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27099624

RESUMO

Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been widely and successfully deployed for the control of target pests, while allowing a substantial reduction in insecticide use. The evolution of resistance (a heritable decrease in susceptibility to Bt toxins) can pose a threat to sustained control of target pests, but a high-dose refuge (HDR) management strategy has been key to delaying countervailing evolution of Bt resistance. The HDR strategy relies on the mating frequency between susceptible and resistant individuals, so either partial dominance of resistant alleles or nonrandom mating in the pest population itself could elevate the pace of resistance evolution. Using classic Wright-Fisher genetic models, we investigated the impact of deviations from standard refuge model assumptions on resistance evolution in the pest populations. We show that when Bt selection is strong, even deviations from random mating and/or strictly recessive resistance that are below the threshold of detection can yield dramatic increases in the pace of resistance evolution. Resistance evolution is hastened whenever the order of magnitude of model violations exceeds the initial frequency of resistant alleles. We also show that the existence of a fitness cost for resistant individuals on the refuge crop cannot easily overcome the effect of violated HDR assumptions. We propose a parametrically explicit framework that enables both comparison of various field situations and model inference. Using this model, we propose novel empiric estimators of the pace of resistance evolution (and time to loss of control), whose simple calculation relies on the observed change in resistance allele frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA