Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Epilepsia ; 64 Suppl 1: S22-S30, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36960686

RESUMO

In recent years, a large group of familial epilepsies and hereditary ataxias have emerged, caused by an extraordinary type of a novel pentanucleotide repeat expansion that has arisen in a preexisting nonpathogenic repeat tract. Remarkably, these insertions have occurred in noncoding regions of genes expressed in the cerebellum, but with highly diverse functions. These conditions, clinically very heterogeneous, may remain underdiagnosed in patients with atypical phenotypes and age at onset. They share, however, many genetic and phenotypic features, and discovery or detection of their pathogenic pentanucleotide repeats for diagnostic purposes can be achieved using recent bioinformatic methods. Here, we focus on the latest advances regarding the peculiar group of pentanucleotide repeat-related disorders beyond epilepsies.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Proteínas do Tecido Nervoso/genética , Cerebelo/patologia , Repetições de Microssatélites
2.
Mov Disord ; 37(12): 2427-2439, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36148898

RESUMO

BACKGROUND: Coding and noncoding repeat expansions are an important cause of neurodegenerative diseases. OBJECTIVE: This study determined the clinical and genetic features of a large German family that has been followed for almost 2 decades with an autosomal dominantly inherited spinocerebellar ataxia (SCA) and independent co-occurrence of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). METHODS: We carried out clinical examinations and telephone interviews, reviewed medical records, and performed magnetic resonance imaging and positron emission tomography scans of all available family members. Comprehensive genetic investigations included linkage analysis, short-read genome sequencing, long-read sequencing, repeat-primed polymerase chain reaction, and Southern blotting. RESULTS: The family comprises 118 members across seven generations, 30 of whom were definitely and five possibly affected. In this family, two different pathogenic mutations were found, a heterozygous repeat expansion in C9ORF72 in four patients with ALS/FTD and a heterozygous repeat expansion in DAB1 in at least nine patients with SCA, leading to a diagnosis of DAB1-related ataxia (ATX-DAB1; SCA37). One patient was affected by ALS and SCA and carried both repeat expansions. The repeat in DAB1 had the same configuration but was larger than those previously described ([ATTTT]≈75 [ATTTC]≈40-100 [ATTTT]≈415 ). Clinical features in patients with SCA included spinocerebellar symptoms, sometimes accompanied by additional ophthalmoplegia, vertical nystagmus, tremor, sensory deficits, and dystonia. After several decades, some of these patients suffered from cognitive decline and one from additional nonprogressive lower motor neuron affection. CONCLUSION: We demonstrate genetic and clinical findings during an 18-year period in a unique family carrying two different pathogenic repeat expansions, providing novel insights into their genotypic and phenotypic spectrums. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Esclerose Lateral Amiotrófica , Ataxia Cerebelar , Demência Frontotemporal , Ataxias Espinocerebelares , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Ataxia Cerebelar/genética , Ataxias Espinocerebelares/genética , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
3.
Water Sci Technol ; 85(4): 1155-1166, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35228360

RESUMO

A 630 m3/d pilot plant was installed at Subiaco WRRF to determine design and operational parameters of a hybrid Modified Ludzack-Ettinger - Membrane Aerated Biofilm Reactor (MLE-MABR) configuration. Two commercial ZeeLung MABR cassettes were installed in series in the anoxic zone and the pilot was fed with primary effluent (averaging COD 601 mg/L, TKN 68.5 mg/L and 17-29 °C). A nitrifying biofilm was developed within 3 weeks and the nitrous oxide (N2O) gas emissions from the MABR exhaust gas proved to be a reliable parameter to assess biofilm development. Both MABRs achieved the average nitrification rate (NR) of 3.7 gNH4-N/m2.d when air flow was 8.6 and 11.2 Nm3/h to MABR1 and MABR2 respectively, which reached a maximum oxygen transfer rate of 17.4 gO2/m2.d. Biofilm thickness was controlled via air scouring and intermittent coarse bubble mixing (90 s on/90 s off). This paper discusses the startup strategy, minimum requirements for process monitoring, impact of different air flow conditions, ORP and mixing patterns on performance efficiency over a 22-week period.


Assuntos
Reatores Biológicos , Águas Residuárias , Biofilmes , Nitrificação , Óxido Nitroso/análise , Eliminação de Resíduos Líquidos
4.
Am J Hum Genet ; 101(1): 87-103, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28686858

RESUMO

Advances in human genetics in recent years have largely been driven by next-generation sequencing (NGS); however, the discovery of disease-related gene mutations has been biased toward the exome because the large and very repetitive regions that characterize the non-coding genome remain difficult to reach by that technology. For autosomal-dominant spinocerebellar ataxias (SCAs), 28 genes have been identified, but only five SCAs originate from non-coding mutations. Over half of SCA-affected families, however, remain without a genetic diagnosis. We used genome-wide linkage analysis, NGS, and repeat analysis to identify an (ATTTC)n insertion in a polymorphic ATTTT repeat in DAB1 in chromosomal region 1p32.2 as the cause of autosomal-dominant SCA; this region has been previously linked to SCA37. The non-pathogenic and pathogenic alleles have the configurations [(ATTTT)7-400] and [(ATTTT)60-79(ATTTC)31-75(ATTTT)58-90], respectively. (ATTTC)n insertions are present on a distinct haplotype and show an inverse correlation between size and age of onset. In the DAB1-oriented strand, (ATTTC)n is located in 5' UTR introns of cerebellar-specific transcripts arising mostly during human fetal brain development from the usage of alternative promoters, but it is maintained in the adult cerebellum. Overexpression of the transfected (ATTTC)58 insertion, but not (ATTTT)n, leads to abnormal nuclear RNA accumulation. Zebrafish embryos injected with RNA of the (AUUUC)58 insertion, but not (AUUUU)n, showed lethal developmental malformations. Together, these results establish an unstable repeat insertion in DAB1 as a cause of cerebellar degeneration; on the basis of the genetic and phenotypic evidence, we propose this mutation as the molecular basis for SCA37.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , DNA Intergênico/genética , Predisposição Genética para Doença , Repetições de Microssatélites/genética , Proteínas do Tecido Nervoso/genética , Mapeamento Físico do Cromossomo , Ataxias Espinocerebelares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Idade de Início , Alelos , Sequência de Bases , Cerebelo/metabolismo , Segregação de Cromossomos/genética , Cromossomos Humanos Par 1/genética , Análise Mutacional de DNA , Desenvolvimento Embrionário/genética , Feminino , Células HEK293 , Haplótipos/genética , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Mutagênese Insercional/genética , Proteínas do Tecido Nervoso/metabolismo , Linhagem , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Reelina , Adulto Jovem
5.
Hum Mutat ; 40(4): 404-412, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30588707

RESUMO

Dynamic mutations by microsatellite instability are the molecular basis of a growing number of neuromuscular and neurodegenerative diseases. Repetitive stretches in the human genome may drive pathogenicity, either by expansion above a given threshold, or by insertion of abnormal tracts in nonpathogenic polymorphic repetitive regions, as is the case in spinocerebellar ataxia type 37 (SCA37). We have recently established that this neurodegenerative disease is caused by an (ATTTC)n insertion within an (ATTTT)n in a noncoding region of DAB1. We now investigated the mutational mechanism that originated the (ATTTC)n insertion within an ancestral (ATTTT)n . Approximately 3% of nonpathogenic (ATTTT)n alleles are interspersed by AT-rich motifs, contrarily to mutant alleles that are composed of pure (ATTTT)n and (ATTTC)n stretches. Haplotype studies in unaffected chromosomes suggested that the primary mutational mechanism, leading to the (ATTTC)n insertion, was likely one or more T>C substitutions in an (ATTTT)n pure allele of approximately 200 repeats. Then, the (ATTTC)n expanded in size, originating a deleterious allele in DAB1 that leads to SCA37. This is likely the mutational mechanism in three similar (TTTCA)n insertions responsible for familial myoclonic epilepsy. Because (ATTTT)n tracts are frequent in the human genome, many loci could be at risk for this mutational process.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Ataxinas/genética , Mutagênese Insercional , Proteínas do Tecido Nervoso/genética , Sequências Repetitivas de Ácido Nucleico , Alelos , Animais , Sequência de Bases , Estudos de Casos e Controles , Cromossomos , Sequência Conservada , Evolução Molecular , Haplótipos , Humanos , Filogenia , Portugal , Primatas , Proteína Reelina
6.
J Hum Genet ; 63(9): 981-987, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29891931

RESUMO

Spinocerebellar ataxia 37 (SCA37) is caused by an (ATTTC)n insertion in a polymorphic ATTTT repeat in the non-coding region of DAB1. The non-pathogenic alleles have a configuration [(ATTTT)7-400], whereas pathogenic alleles have a complex structure of [(ATTTT)60-79(ATTTC)31-75(ATTTT)58-90]. Molecular diagnosis of SCA37 is laborious because about 7% of the pentanucleotide repeat alleles in DAB1 are larger than 30 units and, thus, fail to amplify with standard PCR conditions, resulting in apparently homoallelism or in complete lack of PCR amplification in several cases. The molecular test currently available requires long-range PCR and sequencing analysis for the detection and characterization of these large alleles. We developed a simple assay capable of rapidly detecting the presence or absence of large pentanucleotide repeat sizes. This assay is based on repeat-primed PCR followed by high-throughput capillary electrophoresis. Combining the standard PCR with RP-PCR allows completion of the diagnosis in more than 80% of individuals, minimizing the number of samples that require long-range PCR followed by Sanger sequencing analysis. This assay meets many of the requirements for pre-screening of large cohorts of affected individuals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Repetições de Microssatélites , Mutagênese Insercional , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase/métodos , Ataxias Espinocerebelares/genética , Feminino , Humanos , Masculino
7.
Headache ; 54(5): 911-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24898624

RESUMO

BACKGROUND: CACNA1A gene disorders present a variable familial phenotype of ataxia, migraine with aura, and/or hemiplegic migraine. Prevalence data for these conditions are scarce. OBJECTIVE: The aim of this study is to report a minimal prevalence estimate for familial hemiplegic migraine with cerebellar ataxia and spinocerebellar ataxia type 6 in Portugal. METHODS: This is a multisource population-based prevalence study. Patients and families with spinocerebellar ataxia type 6 and familial hemiplegic migraine and cerebellar ataxia identified through the Portuguese survey of hereditary ataxias and spastic paraplegias were re-evaluated. Prevalent patients were confirmed to be alive and affected at the 1st of January 2013. RESULTS: One family with spinocerebellar ataxia type 6 and 2 families with other CACNA1A gene mutations were identified. From these families, 23 patients were alive and living in Portugal in the prevalence day, for an estimated national prevalence per 100,000 inhabitants of 0.21 for familial hemiplegic migraine with cerebellar ataxia and of 0.01 for spinocerebellar ataxia type 6. CONCLUSION: The prevalence of familial hemiplegic migraine with cerebellar ataxia and spinocerebellar ataxia type 6 are both probably low in Portugal.


Assuntos
Ataxia Cerebelar/complicações , Enxaqueca com Aura/epidemiologia , Enxaqueca com Aura/etiologia , Ataxias Espinocerebelares/complicações , Canais de Cálcio/genética , Ataxia Cerebelar/epidemiologia , Ataxia Cerebelar/genética , Planejamento em Saúde Comunitária , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Enxaqueca com Aura/genética , Mutação/genética , Portugal/epidemiologia , Prevalência , Ataxias Espinocerebelares/epidemiologia , Ataxias Espinocerebelares/genética
8.
Ann Neurol ; 71(2): 245-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22367996

RESUMO

OBJECTIVE: Huntington disease-like 2 (HDL2) is a progressive, late onset autosomal dominant neurodegenerative disorder, with remarkable similarities to Huntington disease (HD). HDL2 is caused by a CTG/CAG repeat expansion. In the CTG orientation, the repeat is located within the alternatively spliced exon 2A of junctophilin-3 (JPH3), potentially encoding polyleucine and polyalanine, whereas on the strand antisense to JPH3, the repeat is in frame to encode polyglutamine. The JPH3 protein product serves to stabilize junctional membrane complexes and regulate neuronal calcium flux. We have previously demonstrated the potential pathogenic properties of JPH3 transcripts containing expanded CUG repeats. The aim of this study was to test the possibility that loss of JPH3 expression or expanded amino acid tracts also contribute to HDL2 pathogenesis. METHODS: Transcripts from the HDL2 locus, and their protein products, were examined in HDL2, HD, and control frontal cortex. The effect of loss of Jph3 was examined in mice with partial or complete loss of Jph3. RESULTS: Bidirectional transcription occurs at the HDL2 locus, although expression of antisense transcripts with expanded CAG repeats is limited. Protein products with expanded amino acid tracts were not detected in HDL2 brain. However, JPH3 transcripts and full-length JPH3 protein are decreased in HDL2 brain, and Jph3 hemizygous and null mice exhibit abnormal motor function. INTERPRETATION: Our results suggest that the pathogenic mechanism of HDL2 is multifactorial, involving both a toxic gain of function of JPH3 RNA and a toxic loss of JPH3 expression.


Assuntos
Doença de Huntington/etiologia , Doença de Huntington/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/deficiência , Expansão das Repetições de Trinucleotídeos/genética , Idade de Início , Animais , Modelos Animais de Doenças , Feminino , Doença de Huntington/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Testes Neuropsicológicos , Oligonucleotídeos Antissenso/genética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia
9.
Brain ; 135(Pt 5): 1423-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22492559

RESUMO

Spinocerebellar ataxia 36 has been recently described in Japanese families as a new type of spinocerebellar ataxia with motor neuron signs. It is caused by a GGCCTG repeat expansion in intron 1 of NOP56. Family interview and document research allowed us to reconstruct two extensive, multigenerational kindreds stemming from the same village (Costa da Morte in Galicia, Spain), in the 17th century. We found the presence of the spinocerebellar ataxia 36 mutation co-segregating with disease in these families in whom we had previously identified an ~0.8 Mb linkage region to chromosome 20 p. Subsequent screening revealed the NOP56 expansion in eight additional Galician ataxia kindreds. While normal alleles contain 5-14 hexanucleotide repeats, expanded alleles range from ~650 to 2500 repeats, within a shared haplotype. Further expansion of repeat size was frequent, especially upon paternal transmission, while instances of allele contraction were observed in maternal transmissions. We found a total of 63 individuals carrying the mutation, 44 of whom were confirmed to be clinically affected; over 400 people are at risk. We describe here the detailed clinical picture, consisting of a late-onset, slowly progressive cerebellar syndrome with variable eye movement abnormalities and sensorineural hearing loss. There were signs of denervation in the tongue, as well as mild pyramidal signs, but otherwise no signs of classical amyotrophic lateral sclerosis. Magnetic resonance imaging findings were consistent with the clinical course, showing atrophy of the cerebellar vermis in initial stages, later evolving to a pattern of olivo-ponto-cerebellar atrophy. We estimated the origin of the founder mutation in Galicia to have occurred ~1275 years ago. Out of 160 Galician families with spinocerebellar ataxia, 10 (6.3%) were found to have spinocerebellar ataxia 36, while 15 (9.4%) showed other of the routinely tested dominant spinocerebellar ataxia types. Spinocerebellar ataxia 36 is thus, so far, the most frequent dominant spinocerebellar ataxia in this region, which may have implications for American countries associated with traditional Spanish emigration.


Assuntos
Saúde da Família , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Expansão das Repetições de Trinucleotídeos/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Cromossomos Humanos Par 20/genética , Análise Mutacional de DNA , Progressão da Doença , Feminino , Ligação Genética , Genótipo , Humanos , Íntrons/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Espanha/epidemiologia , Ataxias Espinocerebelares/patologia
10.
Cells ; 12(6)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980167

RESUMO

Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription.


Assuntos
Expansão das Repetições de DNA , Doenças Neuromusculares , Humanos , Expansão das Repetições de DNA/genética , Mutação , Proteínas/genética , Doenças Neuromusculares/genética , RNA/genética , Nucleotídeos
11.
Expert Opin Drug Deliv ; 19(5): 577-594, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35531670

RESUMO

INTRODUCTION: Designing safe and effective nucleic acid delivery nanosystems presents a challenge that requires a good understanding of various biological barriers, whose impact is frequently neglected during in vitro assessments. Hence, the development of nanosizing non-viral vectors would benefit from a more thorough physicochemical characterization to establish structure-activity relationships and increase the preclinical data relevance. AREAS COVERED: This review focused on major barriers of lipoplexes and polyplexes by systemic delivery such as blood and immune cells and is aimed to serve as a prescreening tool for the fast and safe development of both non-viral vectors in vivo. An outline of the preclinical assays to be performed under physiological representative conditions, to better account for or even predict the highly dynamic interactions in humans is also given. EXPERT OPINION: The rational design of non-viral vectors has shown promising intracellular uptake results in vitro. Translating in vitro success into clinics has gone with progress, but it is still a difficult task to achieve, and more closely mimicking biological environment in vitro assays of lipoplexes and polyplexes may provide more correlated results to in vivo experiments. Clinical practice would benefit from safer non-viral vectors, particularly when avoiding patients' immune responses and toxicity, which is of major concern.


Assuntos
Ácidos Nucleicos , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Lipídeos/química , Polímeros/química , Relação Estrutura-Atividade
12.
Cells ; 11(2)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053321

RESUMO

The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.


Assuntos
Repetições de Microssatélites/genética , Doenças Neurodegenerativas/genética , Alelos , Elementos Alu/genética , Animais , Sequência de Bases , Humanos , Mutagênese Insercional/genética
13.
Behav Brain Funct ; 7: 19, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21639881

RESUMO

The fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expansions of 55-200 CGG repeats in the 5'UTR of the FMR1 gene. These FMR1 premutation expansions have relatively high frequency in the general population. To estimate the frequency of FMR1 premutations among Portuguese males with non-familial, late-onset movement disorders of unknown etiology, we assessed CGG repeat size in males with disease onset after the age of 50 and negative or unknown family history for late-onset movement disorders, who were sent for SCA, HD, or PD genetic testing at a reference laboratory. The selected patients had a primary clinical diagnosis based on one of the following cardinal features of FXTAS: ataxia, tremor, or cognitive decline. A total of 86 subjects were genotyped for the CGG repeat in the FMR1 gene. We detected one patient with an expansion in the premutation range. The frequency of FMR1 premutations was 1.9% (1/54) in our group of patients with ataxia as the primary clinical feature, and 1.2% (1/86) in the larger movement disorders group. In the family of the FXTAS case, premutation-transmitting females presented a history of psychiatric symptoms, suggesting that, given the wide phenotypical expression of the premutation in females, neuropsychiatric surveillance is necessary. In conclusion, genetic testing for FXTAS should be made available to patients with adult-onset movement disorders to enable adequate genetic counseling to family members.


Assuntos
Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Mutação/genética , Tremor/genética , Idoso , Ataxia/complicações , Síndrome do Cromossomo X Frágil/complicações , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Portugal , Tremor/complicações , Expansão das Repetições de Trinucleotídeos/genética
14.
Chemosphere ; 263: 128294, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297236

RESUMO

Wastewater treatment plants (WWTPs) have been identified as an important pathway of microplastics to the environment. Most studies have focused on wastewater effluent, but generally only a small fraction of microplastics entering WWTPs are present in treated effluent. Instead, the majority of microplastics are expected to be retained in the sludge. To our knowledge, there is limited information on microplastics in sludge/biosolids from Australian WWTPs, despite 75% of biosolids produced in Australia being used for agriculture. This study evaluated the abundance of microplastics throughout the treatment trains of three WWTPs in Australia. The fate of microplastics >25 µm during treatment and their release to the environment was evaluated using an audit approach. The highest microplastic concentrations were detected in the influent, with fibres the dominant form of microplastic found. The screening and grit removal process preceding primary treatment removed 69-79% of microplastics, with these microplastics transported to landfill. Only 0.2-1.8% of the total microplastics in the influent were present in the final effluent, while 8-16% were retained in biosolids. This equates to between 22.1 × 106 to 133 × 106 microplastic particles per day released in effluent, between 864 × 106 to 1020 × 106 microplastic particles per day in biosolids, and between 4100 × 106 to 9100 × 106 microplastic particles per day transported to landfill. This study shows for the first time that most microplastics are retained during the initial screening and grit removal process with the load of microplastics going to landfill an order of magnitude greater than that in biosolids. Landfills may thus be an important sink (and potential future source) of microplastics from wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Austrália , Monitoramento Ambiental , Microplásticos , Plásticos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
15.
Trends Microbiol ; 29(2): 92-97, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288385

RESUMO

Despite the international guidelines on the containment of the coronavirus disease 2019 (COVID-19) pandemic, the European scientific community was not sufficiently prepared to coordinate scientific efforts. To improve preparedness for future pandemics, we have initiated a network of nine European-funded Cooperation in Science and Technology (COST) Actions that can help facilitate inter-, multi-, and trans-disciplinary communication and collaboration.


Assuntos
Pesquisa Biomédica/organização & administração , COVID-19/virologia , SARS-CoV-2/fisiologia , Comunicação , Europa (Continente) , Humanos , Pessoal de Laboratório , Pandemias , SARS-CoV-2/genética
16.
Am J Med Genet B Neuropsychiatr Genet ; 153B(2): 524-531, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19676102

RESUMO

The spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by gait and limb ataxia. This disease is caused by the expansion of a (CAG)(n) located in the ATXN2, that encodes a polyglutamine tract of more than 34 repeats. Lately, alleles with 32-33 CAGs have been associated to late-onset disease cases. Repeat interruptions by CAA triplets are common in normal alleles, while expanded alleles usually contain a pure repeat tract. To investigate the mutational origin and the instability associated to the ATXN2 repeat, we performed an extensive haplotype study and sequencing of the CAG/CAA repeat, in a cohort of families of different geographic origins and phenotypes. Our results showed (1) CAA interruptions also in expanded ATXN2 alleles; (2) that pathological CAA interrupted alleles shared an ancestral haplotype with pure expanded alleles; and (3) higher genetic diversity in European SCA2 families, suggesting an older European ancestry of SCA2. In conclusion, we found instability towards expansion in interrupted ATXN2 alleles and a shared ancestral ATXN2 haplotype for pure and interrupted expanded alleles; this finding has strong implications in mutation diagnosis and counseling. Our results indicate that interrupted alleles, below the pathological threshold, may be a reservoir of mutable alleles, prone to expansion in subsequent generations, leading to full disease mutation.


Assuntos
Proteínas do Tecido Nervoso/genética , Ataxias Espinocerebelares/genética , Alelos , Ataxinas , Estudos de Casos e Controles , Análise Mutacional de DNA , Saúde da Família , Variação Genética , Haplótipos , Humanos , Modelos Genéticos , Peptídeos/genética , Fenótipo , Expansão das Repetições de Trinucleotídeos
17.
Genes (Basel) ; 11(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261024

RESUMO

Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.


Assuntos
Expansão das Repetições de DNA , Doenças Neurodegenerativas/genética , Doenças Neuromusculares/genética , RNA Antissenso/biossíntese , Animais , Modelos Animais de Doenças , Drosophila melanogaster/genética , Previsões , Regulação da Expressão Gênica/genética , Humanos , Íntrons/genética , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Mutagênese Insercional , Peptídeos/genética , Poli A/genética , Interferência de RNA , Splicing de RNA/genética , RNA Antissenso/genética , Ataxias Espinocerebelares/genética , Transcrição Gênica , Expansão das Repetições de Trinucleotídeos
18.
Comp Med ; 59(2): 129-38, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19389304

RESUMO

Providing stimulation and allowing the performance of motivated behaviors through environmental enrichment improves learning and memory in rodents and delays cognitive impairment in neurodegenerative disease models. The leaner mutation affects the Ca(v)2.1 voltage-gated calcium channel alpha(1A)-subunit gene, and homozygous mice show severe phenotypic alterations. Although several authors have described heterozygous mice as normal, recent studies in our laboratory indicate motor and cognitive impairment in tg(la)/+ mice. In the present study, we evaluated whether this impairment is robust to systematic variation of the housing environment from barren to standard and furnished (enriched) cages. Wildtype (n = 55) and tg(la)/+ (n = 79) C57Bl/6J mice were assigned randomly to 1 of the 3 housing systems and tested on the Morris water maze at 6, 12, and 20 mo of age. The results confirmed impaired performance in tg(la)/+ mice, particularly in older mice. At 12 and 20 mo, only wildtype (and not tg(la)/+) mice showed evidence of learning (spending increased time in the target quadrant) during the probe trial. Housing also affected performance: at 12 mo, only mice from furnished cages showed evidence of learning, and in aged mice (20 mo), only those housed in more complex environments showed long-term memory (8 mo after previous testing) of the platform position. In conclusion, a heterozygous mutation in a Ca(2+) channel gene causes cognitive deficits in leaner mice that are robust to environmental variation but attenuated by physical and behavioral stimulation.


Assuntos
Meio Ambiente , Abrigo para Animais , Aprendizagem/fisiologia , Camundongos Mutantes , Fenótipo , Comportamento Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Canais de Cálcio Tipo N/genética , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças do Sistema Nervoso/fisiopatologia , Testes Neuropsicológicos , Distribuição Aleatória
19.
Am J Med Genet B Neuropsychiatr Genet ; 147B(4): 439-46, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17948873

RESUMO

In repeat expansion disorders, the size of pathological alleles is the most relevant factor accounting for the disease severity and age-at-onset, emphasizing the clinical significance of their underlying intergenerational instability. In one of these diseases, Machado-Joseph disease (MJD), the sex of transmitting progenitor and the C(987)GG/G(987)GG polymorphism are the best studied factors acting on intergenerational instability of expanded alleles. Here, we assessed the influence of other cis and inter-allelic acting factors, at the ATXN3 locus, through the analysis of MJD lineages, flanking STR-based haplotypes, the initial repeat size and parental age. A total of 100 transmissions of the expanded MJD allele were analyzed according to the sex of the transmitting parent. We have shown that independent origin mutations (identified by intragenic SNP-based haplotypes) behave differently, as the status of instability (contraction, no change or further expansion) is concerned. Indeed, 72% of expansions were associated to the worldwide spread TTACAC lineage, whereas the GTGGCA displayed 75% of all contractions observed. The analysis of flanking recombinant haplotypes did not suggest any further distant cis elements acting up- or downstream the ATXN3 locus. Considering the increased amplitude of expansions seen in older transmitting fathers, a repair-based mechanism may be suggested for the meiotic instability at this locus; furthermore, the lack of correlation between the initial repeat size and degree of instability did not support a replication-based mechanism. In summary, our findings point to different mechanisms of instability underlying male and female meioses, as well as contraction and expansion processes in MJD.


Assuntos
Doença de Machado-Joseph/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Pais , Proteínas Repressoras/genética , Repetições de Trinucleotídeos , Fatores Etários , Ataxina-3 , Instabilidade Genômica , Haplótipos , Humanos , Padrões de Herança , Linhagem , Fatores Sexuais
20.
Arch Neurol ; 64(10): 1502-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17923634

RESUMO

BACKGROUND: Machado-Joseph disease is the most frequent dominant ataxia worldwide. Despite its frequency and presence in many populations, only 2 founder mutations have been suggested to explain its current geographic distribution. OBJECTIVES: To trace back in history the main mutational events in Machado-Joseph disease, we aimed to assess ancestral haplotypes and population backgrounds, to date the mutations, and to trace the routes and time of introduction of the founder haplotypes in different populations. DESIGN, SETTING, AND PARTICIPANTS: We studied 264 families with Machado-Joseph disease from 20 different populations. Six intragenic single-nucleotide polymorphisms were used to determine ancestral mutational events; 4 flanking short tandem repeats were used to construct extended haplotypes and measure accumulation of genetic diversity over time within each lineage. RESULTS: The worldwide-spread lineage, TTACAC, had its highest diversity in the Japanese population, where we identified the ancestral short tandem repeat-based haplotype. Accumulated variability suggested a postneolithic mutation, about 5774 +/- 1116 years old, with more recent introductions in North America, Germany, France, Portugal, and Brazil. As to the second mutational event, in the GTGGCA lineage, only 7 families (of 71 families) did not have Portuguese ancestry, although gene diversity was again smaller in Portuguese families (0.44) than in non-Portuguese families (0.93). CONCLUSIONS: The worldwide-spread mutation may have first occurred in Asia and later been diffused throughout Europe, with a founder effect accounting for its high prevalence in Portugal; the other Machado-Joseph disease lineage is more recent, about 1416 +/- 434 years old, and its dispersion may be explained mainly by recent Portuguese emigration.


Assuntos
Doença de Machado-Joseph/epidemiologia , Doença de Machado-Joseph/genética , Mutação/fisiologia , Ásia/epidemiologia , Emigração e Imigração , Europa (Continente)/epidemiologia , Efeito Fundador , Haplótipos , Humanos , Japão/epidemiologia , Polimorfismo de Nucleotídeo Único/genética , População , Portugal/epidemiologia , Sequências de Repetição em Tandem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA