Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(19): 6146-6155, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29693392

RESUMO

Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.

2.
Inorg Chem ; 57(15): 8714-8717, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30043611

RESUMO

A luminescent lanthanide metal-organic framework [Tb7(OH)8(H2O)6(IDA)3(COO)3]·4Cl·2H2O (Tb-IDA, IDA = iminodiacetic acid) was hydrothermally synthesized and structurally characterized. Monitoring ultraviolet radiation was achieved by correlating the dosage with the luminescence color change in doped Gd99Tb0.1Eu0.9-IDA compound. A linear relationship is developed across a broad range from blue to yellow within a CIE chromaticity diagram.

3.
Inorg Chem ; 57(3): 903-907, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29320167

RESUMO

The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na2UV2(HPO3)6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.

4.
Inorg Chem ; 57(3): 1676-1683, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29345469

RESUMO

The exploration of phase formation in the f-element-bearing iodate selenate system has resulted in 14 novel rare-earth-containing iodate selenates, Ln(IO3)(SeO4) (Ln = La, Ce, Pr, Nd; LnISeO-1), Ln(IO3)(SeO4)(H2O) (Ln = Sm, Eu; LnISeO-2), and Ln(IO3)(SeO4)(H2O)2·H2O (Ln = Gd, Dy, Ho, Er, Tm, Yb, Lu, Y; LnISeO-3), as well as two new thorium iodate selenates, Th(OH)(IO3)(SeO4)(H2O) (ThISeO-1) and Th(IO3)2(SeO4) (ThISeO-2). LnISeO-3 and ThISeO-2 crystallize in the chiral space group P212121, while LnISeO-1, LnISeO-2, and ThISeO-1 crystallize in the centrosymmetric space group P21/c. The numbers of both coordinating and hydrating water molecules crystallized in LnISeO-1, LnISeO-2, and LnISeO-3 increase along these three series, in line with the increasingly negative values of hydration enthalpies of heavier trivalent lanthanide ions. Such a systematic change in compositions, especially the first coordination sphere of Ln, further induces structural rearrangements, including coordination number and dimensional reductions. More specifically, the structures of LnISeO-1, LnISeO-2, and LnISeO-3 have undergone transitions from 2D Ln-oxo layers with 10-coordinate Ln centers to 1D Ln-oxo chains with 9-coordinate Ln centers and then to 0D Ln-oxo monomers with 8-coordinate Ln centers, respectively. The formation and characterization of this large family of Ln/Th iodate selenates suggest that such a mixed-anion system not only exhibits richer structural chemistry but also can be capable of generating intriguing properties, such as the second-harmonic generation (SHG) effect.

5.
Inorg Chem ; 57(2): 575-582, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29297683

RESUMO

There have been numerous studies on emission-color regulation by the adjustment of molar amounts of multiple trivalent lanthanide cations, such as Eu3+, Tb3+, Dy3+, and others, in many types of solid host materials. Although uranyl emission originating from charge-transfer transitions has been well-recognized and investigated for many decades, as of now there is no report on tunable 4f/5f bimodal emission based on heterobimetallic lanthanide(III) and uranyl(VI) compounds. In most cases, complete energy transfer between uranyl(VI) and lanthanide(III) centers was observed. In this work, a series of isotypic-europium-incorporated uranyl coordination polymers, Eu@UO2L(DMF) (L2- = 3,5-pyridinedicarboxylate, denoted as 1-10, which represent the different Eu contents in UO2L(DMF); DMF = N,N-dimethylformamide), has been synthesized by solvothermal reactions. Crystallographic evidence of this series unveiled one-dimensional chains of UO22+ as pentagonal-bipyramidal units bridged by pyridinedicarboxylate with no defined, crystallographically unique site containing Eu, even for the products with high concentrations of Eu in this series. However, emission bands characteristic of Eu3+ were clearly observed in every product along with the characteristic uranyl-emission feature when observed with UV-vis fluorescence spectroscopy. Laser-ablation inductively coupled plasma mass spectrometry indicated that europium was concomitant with uranium, corroborating the incorporation of europium into crystals of UO2L(DMF). Systematic control of the solvent ratio (VH2O/VDMF) in each reaction gives rise to an enrichment of Eu3+ in the interior of UO2L(DMF). In addition, the color of emission of these compounds changed significantly from bright red to bright green with decreasing Eu content. This phenomenon occurs from the highly efficient energy transfer between the UO22+ and Eu3+ centers within each sample, providing the first case of a tunable 4f/5f bimodal emission in a mixed 4f/5f-elements-bearing metal-organic-hybrid material.

6.
Inorg Chem ; 57(11): 6753-6761, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29792317

RESUMO

By utilizing zinc amalgam as an in situ reductant and pH regulator, mild hydrothermal reaction between UO2(CH3COO)2·2H2O, H2SO4, and Cs2CO3 or between UO2(CH3COO)2·2H2O, C2H4(SO3H)2, and K2CO3 yielded a novel cesium UIV sulfate trimer Cs4[U3O(SO4)7]·2.2H2O (1) and a new potassium UIV disulfonic hexamer K[U6O4(OH)5(H2O)5][C2H4(SO3)2]6·6H2O (2), respectively. Compound 1 features a lamellar structure with a honeycomb lattice, and it represents an unprecedented trimeric UIV cluster composed of purely inorganic moieties. Complex 2 is built from hexanuclear U4+ cores and K+ ions interconnected by µ5-[C2H4(SO3)2]2- groups, leading to the construction of an extended framework rather than commonly observed discrete, neutral molecular sulfonate clusters. The various binding modes of the sulfate and disulfonate groups, especially the multidentate ones, enable additional bridging between metal ions, which promotes oligomerization and isolation of polynuclear species. Furthermore, compound 1 exhibits both ion-exchange properties and the Alexandrite effect, and it is the second example of a uranium complex without chromic functional ligands displaying the latter feature.

7.
Inorg Chem ; 57(12): 6778-6782, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29869873

RESUMO

Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO4)(H2O)4Cl]Cl·H2O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO4)(H2O)4Cl]+ with Cl- as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th4+ center in TMC are vulnerable to competition with F-, due to the formation of more favorable Th-F bonds compared to Th-OH2. This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.

8.
Angew Chem Int Ed Engl ; 57(26): 7883-7887, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29600818

RESUMO

The combination of high atomic number and high oxidation state in UVI materials gives rise to both high X-ray attenuation efficiency and intense green luminescence originating from ligand-to-metal charge transfer. These two features suggest that UVI materials might act as superior X-ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X-ray scintillation in a uranyl-organic framework (SCU-9) that is observable by the naked eye is reported. Combining the advantage in minimizing the non-radiative relaxation during the X-ray excitation process over those of inorganic salts of uranium, SCU-9 exhibits a very efficient X-ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X-ray intensity, and is comparable with that of commercially available CsI:Tl. SCU-9 possesses an improved X-ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl.

9.
Angew Chem Int Ed Engl ; 57(20): 5783-5787, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29601119

RESUMO

Actinide based metal-organic frameworks (MOFs) are unique not only because compared to the transition-metal and lanthanide systems they are substantially less explored, but also owing to the uniqueness of actinide ions in bonding and coordination. Now a 3D thorium-organic framework (SCU-11) contains a series of cages with an effective size of ca. 21×24 Å. Th4+ in SCU-11 is 10-coordinate with a bicapped square prism coordination geometry, which has never been documented for any metal cation complexes. The bicapped position is occupied by two coordinated water molecules that can be removed to afford a very unique open Th4+ site, confirmed by X-ray diffraction, color change, thermogravimetry, and spectroscopy. The degassed phase (SCU-11-A) exhibits a Brunauer-Emmett-Teller surface area of 1272 m2 g-1 , one of the highest values among reported actinide materials, enabling it to sufficiently retain water vapor, Kr, and Xe with uptake capacities of 234 cm3 g-1 , 0.77 mmol g-1 , 3.17 mmol g-1 , respectively, and a Xe/Kr selectivity of 5.7.

10.
J Am Chem Soc ; 139(42): 14873-14876, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28985681

RESUMO

Effective and selective removal of 99TcO4- from aqueous solution is highly desirable for both waste partitioning and contamination remediation purposes in the modern nuclear fuel cycle, but is of significant challenge. We report here a hydrolytically stable and radiation-resistant cationic metal-organic framework (MOF), SCU-101, exhibiting extremely fast removal kinetics, exceptional distribution coefficient, and high sorption capacity toward TcO4-. More importantly, this material can selectively remove TcO4- in the presence of large excesses of NO3- and SO42-, as even 6000 times of SO42- in excess does not significantly affect the sorption of TcO4-. These superior features endow that SCU-101 is capable of effectively separating TcO4- from Hanford low-level waste melter off-gas scrubber simulant stream. The sorption mechanism is directly unraveled by the single crystal structure of TcO4--incorporated SCU-101, as the first reported crystal structure to display TcO4- trapped in a sorbent material. A recognition site for the accommodation of TcO4- is visualized and is consistent with the DFT analysis results, while no such site can be resolved for other anions.

11.
J Am Chem Soc ; 139(38): 13361-13375, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28817775

RESUMO

The reaction of 249Bk(OH)4 with iodate under hydrothermal conditions results in the formation of Bk(IO3)3 as the major product with trace amounts of Bk(IO3)4 also crystallizing from the reaction mixture. The structure of Bk(IO3)3 consists of nine-coordinate BkIII cations that are bridged by iodate anions to yield layers that are isomorphous with those found for AmIII, CfIII, and with lanthanides that possess similar ionic radii. Bk(IO3)4 was expected to adopt the same structure as M(IO3)4 (M = Ce, Np, Pu), but instead parallels the structural chemistry of the smaller ZrIV cation. BkIII-O and BkIV-O bond lengths are shorter than anticipated and provide further support for a postcurium break in the actinide series. Photoluminescence and absorption spectra collected from single crystals of Bk(IO3)4 show evidence for doping with BkIII in these crystals. In addition to luminescence from BkIII in the Bk(IO3)4 crystals, a broad-band absorption feature is initially present that is similar to features observed in systems with intervalence charge transfer. However, the high-specific activity of 249Bk (t1/2 = 320 d) causes oxidation of BkIII and only BkIV is present after a few days with concomitant loss of both the BkIII luminescence and the broadband feature. The electronic structure of Bk(IO3)3 and Bk(IO3)4 were examined using a range of computational methods that include density functional theory both on clusters and on periodic structures, relativistic ab initio wave function calculations that incorporate spin-orbit coupling (CASSCF), and by a full-model Hamiltonian with spin-orbit coupling and Slater-Condon parameters (CONDON). Some of these methods provide evidence for an asymmetric ground state present in BkIV that does not strictly adhere to Russel-Saunders coupling and Hund's Rule even though it possesses a half-filled 5f 7 shell. Multiple factors contribute to the asymmetry that include 5f electrons being present in microstates that are not solely spin up, spin-orbit coupling induced mixing of low-lying excited states with the ground state, and covalency in the BkIV-O bonds that distributes the 5f electrons onto the ligands. These factors are absent or diminished in other f7 ions such as GdIII or CmIII.

12.
Inorg Chem ; 55(11): 5092-4, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27228095

RESUMO

The reaction of formohydroxamic acid [NH(OH)CHO, FHA] with Pu(III) should result in stabilization of the trivalent oxidation state. However, slow oxidation to Pu(IV) occurs, which leads to formation of the dimeric plutonium(IV) formohydroxamate complex Pu2(FHA)8. In addition to being reductants, hydroxamates are also strong π-donor ligands. Here we show that formation of the Pu2(FHA)8 dimer occurs via covalency between the 5f orbitals on plutonium and the π* orbitals of FHA(-) anions, which gives rise to a broad and intense ligand-to-metal charge-transfer feature. Time-dependent density functional theory calculations corroborate this assignment.

13.
Inorg Chem ; 55(9): 4373-80, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27070401

RESUMO

The reaction of Ce(III) or Pu(III) with 1,10-phenanthroline-2,9-dicarboxylic acid (PDAH2) results in the formation of new f-element coordination complexes. In the case of cerium, Ce(PDA)(H2O)2Cl·H2O (1) or [Ce(PDAH)(PDA)]2[Ce(PDAH)(PDA)] (2) was isolated depending on the Ce/ligand ratio in the reaction. The structure of 2 is composed of two distinct substructures that are constructed from the same monomer. This monomer is composed of a Ce(III) cation bound by one PDA(2-) dianionic ligand and one PDAH(-) monoanionic ligand, both of which are tetradentate. Bridging by the carboxylate moieties leads to either [Ce(PDAH)(PDA)]2 dimers or [Ce(PDAH)(PDA)]1∞ helical chains. For plutonium, Pu(PDA)2 (3) was the only product isolated regardless of the Pu/ligand ratio employed in the reaction. During the reaction of plutonium with PDAH2, Pu(III) is oxidized to Pu(IV), generating 3. This assignment is consistent with structural metrics and the optical absorption spectrum. Ambiguity in the assignment of the oxidation state of cerium in 1 and 2 from UV-vis-near-IR spectra invoked the use of Ce L3,2-edge X-ray absorption near-edge spectroscopy, magnetic susceptibility, and heat capacity measurements. These experiments support the assignment of Ce(III) in both compounds. The bond distances and coordination numbers are also consistent with these assignments. 3 contains 8-coordinate Pu(IV), whereas the cerium centers in 1 and 2 are 9- and/or 10-coordinate, which correlates with the increased size of Ce(III) versus Pu(IV). Taken together, these data provide an example of a system where the differences in the redox behavior between these f elements creates more complex chemistry with cerium than with plutonium.

14.
Inorg Chem ; 54(11): 5280-4, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25959102

RESUMO

The complexation of UO2(2+) by formohydroxamate (FHA(-)) creates solutions with dark red coloration. The inherent redox activity of formohydroxamate leads to the possibility that these solutions contain U(V) complexes, which are often red. We demonstrate that the reaction of U(VI) with formohydroxamate does not result in reduction, but rather in formation of the putative cis-aquo UO2(FHA)2(H2O)2, whose polymeric solid-state structure, UO2(FHA)2, contains an unusually bent UO2(2+) unit and a highly distorted coordination environment around a U(VI) cation in general. The bending of the uranyl cation results from unusually strong π donation from the FHA(-) ligands into the 6d and 5f orbitals of the U(VI) cation. The alteration of the bonding in the uranyl unit drastically changes its electronic and vibrational features.

15.
Inorg Chem ; 54(23): 11399-404, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26562586

RESUMO

The reaction of (248)CmCl3 with excess 2,6-pyridinedicarboxylic acid (DPA) under mild solvothermal conditions results in crystallization of the tris-chelate complex Cm(HDPA)3 · H2O. Approximately half of the curium remains in solution at the end of this process, and evaporation of the mother liquor results in crystallization of the bis-chelate complex [Cm(HDPA)(H2DPA)(H2O)2Cl]Cl·2H2O. (248)Cm is the daughter of the α decay of (252)Cf and is extracted in high purity from this parent. However, trace amounts of (249,250,251)Cf are still present in all samples of (248)Cm. During the crystallization of Cm(HDPA)3 · H2O and [Cm(HDPA)(H2DPA)(H2O)2Cl]Cl · 2H2O, californium(III) spontaneously separates itself from the curium complexes and is found doped within crystals of DPA in the form of Cf(HDPA)3. These results add to the growing body of evidence that the chemistry of californium is fundamentally different from that of earlier actinides.

16.
Talanta ; 196: 515-522, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683399

RESUMO

We report here the investigation of using a luminescent europium organic framework, [Eu2(MTBC)(OH)2(DMF)3(H2O)4]·2DMF·7H2O (denoted as compound 1), for detecting of both Cu2+ and UO22+ with high sensitivity. Based on the spectroscopy analysis, compound 1 could selectively respond to Cu2+ and UO22+ ions among other selected monovalent, divalent, trivalent metal cations based on a turn-off mechanism. The detection limit of compound 1 towards Cu2+ ion was as low as 17.2 µg/L, which is much lower than the maximum tolerable concentration of Cu2+ in drinking water (2 mg/L) defined by United States Environmental Protection Agency. On the other hand, the detection limit towards UO22+ ions is 309.2 µg/L, which could be used for detecting uranium in relative severely contaminated areas. The concentration-dependent luminescence intensity evolution process could be fully understood by the absorption kinetics and isotherm investigations. Furthermore, the quenching mechanism was elucidated by the UV-vis, excitation, luminescence, and lifetime studies. Compound 1, as the first MOF based luminescence probe for both Cu2+ and UO22+ ions, provides insight into developing MOF-based multifunctional sensors for both nonradioactive and radioactive elements.

17.
Nat Commun ; 10(1): 2570, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239437

RESUMO

Searching for actinide decorporation agents with advantages of high decorporation efficiency, minimal biological toxicity, and high oral efficiency is crucial for nuclear safety and the sustainable development of nuclear energy. Removing actinides deposited in bones after intake is one of the most significant challenges remaining in this field because of the instantaneous formation of highly stable actinide phosphate complexes upon contact with hydroxyapatite. Here we report a hydroxypyridinone-based ligand (5LIO-1-Cm-3,2-HOPO) exhibiting stronger affinity for U(VI) compared with the reported tetradentate hydroxypyridinone ligands. This is further revealed by the first principles calculation analysis on bonding between the ligand and uranium. Both in vitro uranium removal assay and in vivo decorporation experiments with mice show that 5LIO-1-Cm-3,2-HOPO can remove uranium from kidneys and bones with high efficiencies, while the decorporation efficiency is nearly independent of the treatment time. Moreover, this ligand shows a high oral decorporation efficiency, making it attractive for practical applications.


Assuntos
Osso e Ossos/química , Quelantes/administração & dosagem , Piridonas/administração & dosagem , Lesões por Radiação/terapia , Urânio/toxicidade , Adsorção , Animais , Osso e Ossos/metabolismo , Quelantes/química , Feminino , Humanos , Rim/química , Rim/metabolismo , Ligantes , Camundongos , Piridonas/química , Lesões por Radiação/induzido quimicamente , Lesões por Radiação/metabolismo , Urânio/química , Urânio/metabolismo
18.
Dalton Trans ; 47(3): 649-653, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29211078

RESUMO

We present a depleted uranium-based metal organic framework, UO2(C8H3O6N)·DMF, that exhibits highly sensitive and selective detection towards Fe3+ ions in aqueous media with an extremely low detection limit of 6.3 ppb. This work offers insight into exploring the potential applications of actinide-based metal organic frameworks in the area of chemical sensing with intrinsic advantages of high selectivity and sensitivity.

19.
Dalton Trans ; 47(42): 14908-14916, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30183785

RESUMO

Uranium is unique owing not only to its intriguing physiochemical properties, but also to the diverse coordination chemistry that uranyl adopts and bonding that enables rich and unpredictable topologies of uranium-bearing materials. Six anionic uranium oxyfluorides with various dimensionalities, including a 3D framework (MeUF), four 2D lamellar structures (EtUF-1, PrUF, BuUF-1, and BuUF-2), and a 1D chained topology (EtUF-2), have been rationally constructed by employing tetra-alkyl ammonium ions as structure-directing agents. By combining the tunable interlayer distance of the lamellar structures with the photooxygenation properties of uranyl ions, a bifunctional platform for highly selective ion-exchange and photocatalytic degradation over organic dyes has been developed. Specifically, BuUF-2 can efficiently capture 94.5% methylene blue (MB+) within 24 h from solution with remarkable selectivity related to both the size and the charge of organic dyes. Such size- and charge-dependent selectivity toward organic dyes has been documented for MOFs, but is rare for 2D lamellar materials. Furthermore, the removal of MB+ can be largely accelerated under UV radiation (e.g. 84.7% for BuUF-2 within 1 h) due to the photocatalytic activities of EtUF-1, EtUF-2, PrUF, and BuUF-2.

20.
Chem Commun (Camb) ; 54(6): 627-630, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29299560

RESUMO

When exposed to water, the two-dimensional uranyl-organic layered compound [(CH3)2NH2][(UO2)(BCPBA)]·2DMF·H2O (H3BCPBA = 3,5-bis (4'-carboxylphenoxy) benzoic acid) gradually undergoes a complete single-crystal-to-single-crystal phase transition to [(CH3)2NH2][(UO2)(BCPBA)]·3.4H2O, resulting in an enhanced ligand-ligand interaction between the adjacent layers. This process gives rise to initial quenching of the uranyl photoluminescence followed by subsequent recovery of the photoluminescence with a much elevated intensity, as a unique case of aggregation-induced emission in an extended solid system, further confirmed by DFT analysis on bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA