Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(32): 10116-9, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27478889

RESUMO

In this work a new ultrafast data collection strategy for electron diffraction tomography is presented that allows reducing data acquisition time by one order of magnitude. This methodology minimizes the radiation damage of beam-sensitive materials, such as microporous materials. This method, combined with the precession of the electron beam, provides high quality data enabling the determination of very complex structures. Most importantly, the implementation of this new electron diffraction methodology is easily affordable in any modern electron microscope. As a proof of concept, we have solved a new highly complex zeolitic structure named ITQ-58, with a very low symmetry (triclinic) and a large unit cell volume (1874.6 Å(3)), containing 16 silicon and 32 oxygen atoms in its asymmetric unit, which would be very difficult to solve with the state of the art techniques.

2.
J Am Chem Soc ; 136(9): 3342-5, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24456134

RESUMO

A new zeolite (named as ITQ-52) having large cavities and small and medium channels has been synthesized. This was achieved by using a new family of amino-phosphonium cations as organic structure directing agents (OSDA). These cations contain P-C and P-N bonds, and therefore they lie between previously reported P-containing OSDA, such as tetraalkylphosphonium and phosphazenes. In this study, it has been found that 1,4-butanediylbis[tris(dimethylamino)]phosphonium dication is a very efficient OSDA for crystallization of several zeolites, and in some particular conditions, the new zeolite ITQ-52 was synthesized as a pure phase. The structure of ITQ-52 has been solved using high-resolution synchrotron X-ray powder diffraction data of the calcined solid. This new zeolite crystallizes in the space group I2/m, with cell parameters a = 17.511 Å, b = 17.907 Å, c = 12.367 Å, and ß = 90.22°. The topology of ITQ-52 can be described as a replication of a composite building unit with ring notation [4(3)5(4)6(1)] that gives rise to the formation of an interconnected 8R and 10R channel system.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159741

RESUMO

The effect of external hydrostatic pressure on the hydrothermal synthesis of the microporous silicoaluminophosphate SAPO-18 has been explored. The crystallization of the SAPO-18 phase is inhibited at 150 °C under high pressures (200 MPa) when using relatively diluted synthesis mixtures. On the contrary, the use of concentrated synthesis mixtures allowed SAPO-18 to be obtained in all the studied conditions. The obtained solids were characterized with XRD, SEM, ICP-AES, TG and 27Al and 31P MAS NMR spectroscopy. The results highlight the importance of the external pressure effect on the hydrothermal synthesis of molecular sieves and its influence on the interaction between the organic molecule and the silicoaluminophosphate network.

4.
Chem Sci ; 12(22): 7677-7695, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34168820

RESUMO

Zeolites have been successfully employed in many catalytic reactions of industrial relevance. The severe conditions required in some processes, where high temperatures are frequently combined with the presence of steam, highlight the need of considering the evolution of the catalyst structure during the reaction. This review attempts to summarize the recently developed strategies to improve the hydrothermal framework stability of zeolites.

5.
Chem Commun (Camb) ; 54(17): 2122-2125, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29419825

RESUMO

Here, we present the synthesis and structure determination of the new zeolite ITQ-62. Its structure was determined via ultra-fast electron diffraction tomography and refined using powder XRD data of the calcined material. This new zeolite contains a tridirectional channel system of highly distorted 8-rings, as well as a monodirectional 12-ring channel system.

6.
Science ; 330(6008): 1219-22, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21109667

RESUMO

Organic structure-directing agents (OSDAs) are used to guide the formation of particular types of pores and channels during the synthesis of zeolites. We report that the use of highly versatile OSDAs based on phosphazenes has been successfully introduced for the synthesis of zeolites. This approach has made possible the synthesis of the elusive boggsite zeolite, which is formed by 10- and 12-ring intersecting channels. This topology and these pore dimensions present interesting opportunities for catalysis in reactions of industrial relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA