RESUMO
Over decades, pesticide regulations have cycled between approval and implementation, followed by the discovery of negative effects on nontarget organisms that result in new regulations, pesticides, and harmful effects. This relentless pattern undermines the capacity to protect the environment from pesticide hazards and frustrates end users that need pest management tools. Wild pollinating insects are in decline, and managed pollinators such as honey bees are experiencing excessive losses, which threatens sustainable food security and ecosystem function. An increasing number of studies demonstrate the negative effects of field-realistic exposure to pesticides on pollinator health and fitness, which contribute to pollinator declines. Current pesticide approval processes, although they are superior to past practices, clearly continue to fail to protect pollinator health. In the present article, we provide a conceptual framework to reform cyclical pesticide approval processes and better protect pollinators.
RESUMO
The global challenge to increase agricultural production goes along with the need of decreasing pesticide risks. The European Union (EU) therefore evaluates and controls the risks posed by pesticides by regulating their authorisation through the science-based Risk Assessment process. Member States can however act in derogation to this process and grant the Emergency Authorisation (EA) of pesticides that are currently non-authorised. To protect the health of humans and the environment, Emergency Authorisations are only permitted in exceptional circumstances of agricultural emergency: their use should be limited (i.e., cannot exceed 120 days and one growing season) and concurrent research on alternative strategies must be enforced. Here, we assessed the impact of the Emergency Authorisations process to human and environmental health. Bees, bioindicators of environmental health, were used as model species. Our research demonstrates that i) Emergency Authorisations are widely used throughout EU Member States (annually granted Emergency Authorisationsmin-max, 2017-2021 = 593-660); ii) 12 % of Emergency Authorisations granted the use of pesticides for longer than prescribed by EU regulations; iii) 37 % of Emergency Authorisations were repeatedly granted over time by the same Member State for the same agricultural purpose (i.e., to control the same pest on the same crop); iv) 21 % of Emergency Authorisations granted the use of Active Substances non-approved by risk assessment (EA-ASs Type3) which consequently contaminate the environment (44 % of environmental biomonitoring studies found EA-AS Type3) while being significantly more toxic to pollinators than regularly approved ASs. To facilitate the implementation of sustainable control strategies towards a safer environment for humans and other animals, we identified the most frequent agricultural emergencies and the key research needs. This first quantitative assessment of the Emergency Authorisation process unveils an enduring state of agricultural emergency that acts in derogation of the EU Regulation, leading to broad human, animal, and environmental implications.
Assuntos
Agricultura , Exposição Ambiental , União Europeia , Praguicidas , Praguicidas/toxicidade , Abelhas/efeitos dos fármacos , Humanos , Animais , Medição de Risco , Exposição Ambiental/estatística & dados numéricosRESUMO
Pollinators are essential for crop productivity. Yet, in agricultural areas, they may be threatened by pesticide exposure. Current pesticide risk assessments predominantly focus on honey bees, with a lack of standardized protocols for solitary bees. This study addresses this gap by developing a long-term oral exposure protocol tailored for O. bicornis. We conducted initial trials to determine optimal container sizes and feeding methods, ensuring high survival rates and accurate syrup consumption measurements. A validation test involving five laboratories was then conducted with the insecticide Flupyradifurone (FPF). Control mortality thresholds were set at ≤ 15% at 10 days. Three laboratories achieved ≤10%, demonstrating the protocol's effectiveness in maintaining healthy test populations. The seasonal timing of experiments influenced control mortality, underscoring the importance of aligning tests with the natural flight period of the population used. Our findings revealed dose-dependent effects of FPF on syrup consumption, showing stimulatory effects at lower concentrations and inhibitory effects at higher ones. The 10-day median lethal daily dose (LDD50) of FPF for O. bicornis (531.92 ng/bee/day) was 3.4-fold lower than that reported for Apis mellifera (1830 ng/bee/day), indicating Osmia's higher susceptibility. Unlike other insecticides, FPF did not exhibit time-reinforced toxicity. This study introduces a robust protocol for chronic pesticide exposure in solitary bees, addressing a critical gap in current risk assessment. Based on its low risk to honey bees and bumblebees, FPF is approved for application during flowering. However, our results suggest that it may threaten Osmia populations under realistic field conditions. Our findings underscore the need for comparative toxicity studies to ensure comprehensive protection of all pollinators and the importance of accounting for long term exposure scenarios in risk assessment. By enhancing our understanding of chronic pesticide effects in solitary bees, our study should contribute to the development of more effective conservation strategies and sustainable agricultural practices.
RESUMO
The assessment of pesticide risks to insect pollinators have typically focused on short-term, lethal impacts. The environmental ramifications of many of the world's most commonly employed pesticides, such as those exhibiting systemic properties that can result in long-lasting exposure to insects, may thus be severely underestimated. Here, seven laboratories from Europe and North America performed a standardised experiment (a ring-test) to study the long-term lethal and sublethal impacts of the relatively recently approved 'bee safe' butenolide pesticide flupyradifurone (FPF, active ingredient in Sivanto®) on honey bees. The emerging contaminant, FPF, impaired bee survival and behaviour at field-realistic doses (down to 11 ng/bee/day, corresponding to 400 µg/kg) that were up to 101-fold lower than those reported by risk assessments (1110 ng/bee/day), despite an absence of time-reinforced toxicity. Our findings raise concerns about the chronic impact of pesticides on pollinators at a global scale and support a novel methodology for a refined risk assessment.
Assuntos
4-Butirolactona/análogos & derivados , Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Praguicidas/toxicidade , Piridinas/toxicidade , 4-Butirolactona/toxicidade , Animais , Abelhas/fisiologia , Polinização/efeitos dos fármacosRESUMO
Over-reliance on pesticides for pest control is inflicting serious damage to the environmental services that underpin agricultural productivity. The widespread use of systemic insecticides, neonicotinoids, and the phenylpyrazole fipronil in particular is assessed here in terms of their actual use in pest management, effects on crop yields, and the development of pest resistance to these compounds in many crops after two decades of usage. Resistance can only be overcome in the longterm by implementing methods that are not exclusively based on synthetic pesticides. A diverse range of pest management tactics is already available, all of which can achieve efficient pest control below the economic injury level while maintaining the productivity of the crops. A novel insurance method against crop failure is shown here as an example of alternative methods that can protect farmer's crops and their livelihoods without having to use insecticides. Finally, some concluding remarks about the need for a new framework for a truly sustainable agriculture that relies mainly on natural ecosystem services instead of chemicals are included; this reinforcing the previous WIA conclusions (van der Sluijs et al. Environ Sci Pollut Res 22:148-154, 2015).
Assuntos
Inseticidas , Praguicidas , Ecossistema , Neonicotinoides , Controle de PragasRESUMO
Pollen stored by bees undergoes a fermentation marked by the presence of lactic acid bacteria and yeasts. It results in bee bread. Past studies have singled out Starmerella (Candida) magnoliae as the most common yeast species in honey bee-stored bee bread. Starmerella species are ecological specialists with potential biotechnological value. The rarity of recent studies on yeasts in honey bees prompted us to generate new information on yeast diversity during the conversion of bee-collected pollen to bee bread. Bees and stored pollen from two apiaries in Belgium were sampled, a yeast isolation protocol was developed, yeast isolates were grouped according to their macro- and micromorphology, and representative isolates were identified using DNA sequences. Most of the 252 identified isolates belonged to the genera Starmerella, Metschnikowia, and Zygosaccharomyces. The high abundance of yeasts in fresh bee bread decreased rapidly with the storage duration. Starmerella species dominated fresh bee bread, while mostly Zygosaccharomyces members were isolated from aged bee bread. Starmerella (Candida) apis, a rarely isolated species, was the most frequent and abundant species in fresh bee bread. Yeasts from the bee's honey stomach and from pollen pellets obtained from bees hind legs were dominated by Metschnikowia species. The distinctive communities from pollen pellets over fresh bee bread to aged bee bread indicate a non-random distribution of these yeasts.
RESUMO
Synthetic fungicides are pesticides widely used in agriculture to control phytopathogenic fungi. The systemicity, persistency and intense application of some of these fungicides, such as boscalid, leads to long periods of exposure for honeybees via contaminated water, pollen and nectar. We exposed adult honeybees in the lab to food contaminated with boscalid for 33 days instead of the standard 10-day test. Most of the toxic effects were observed after 10 days. The median time to death (LT50) ranged from 24.9 days (lowest concentration) to 7.1 days (highest concentration) and was significantly shorter in all cases than with the control (32.0 days). The concentration and dietary doses of boscalid inducing 50% mortality (LC50 and LDD50, respectively) decreased strongly with the time of exposure: LC50 = 14,729 and 1,174 mg/l and LDD50 = 0.318 and 0.0301 mg bee-1 day-1 at days 8 and 25, respectively. We found evidence of reinforced toxicity when exposure is prolonged, but with an unusual pattern: no cumulative toxicity is observed until 17-18 days, when a point of inflexion appears that suggests a reduced capacity of bees to deal with the toxicant. Our results show the importance of time-to-death experiments rather than fixed-duration studies for evaluating chronic toxicity.
Assuntos
Abelhas/efeitos dos fármacos , Compostos de Bifenilo/toxicidade , Fungicidas Industriais/toxicidade , Niacinamida/análogos & derivados , Testes de Toxicidade Aguda/métodos , Animais , Abelhas/fisiologia , Dose Letal Mediana , Niacinamida/toxicidade , Fatores de TempoRESUMO
To evaluate the risks of pesticides for pollinators, we must not only evaluate their toxicity but also understand how pollinators are exposed to these xenobiotics in the field. We focused on this last point and modeled honey bee exposure to pesticides at the landscape level. Pollen pellet samples (n = 60) from 40 Belgian apiaries were collected from late July to October 2011 and underwent palynological and pesticide residue analyses. Areas of various crops around each apiary were measured at 4 spatial scales. The most frequently detected pesticides were the fungicides boscalid (n = 19, 31.7%) and pyrimethanil (n = 10, 16.7%) and the insecticide dimethoate (n = 10, 16.7%). We were able to predict exposure probability for boscalid and dimethoate by using broad indicators of cropping intensity, but it remained difficult to identify the precise source of contamination (e.g. specific crops in which the use of the pesticide is authorized). For pyrimethanil, we were not able to build any convincing landscape model that could explain the contamination. Our results, combined with the late sampling period, strongly suggest that pesticides applied to crops unattractive to pollinators, and therefore considered of no risk for them, may be sources of exposure through weeds, drift to neighboring plants, or succeeding crops.
Assuntos
Abelhas/metabolismo , Compostos de Bifenilo/efeitos adversos , Niacinamida/análogos & derivados , Praguicidas/efeitos adversos , Pirimidinas/efeitos adversos , Animais , Compostos de Bifenilo/farmacologia , Niacinamida/efeitos adversos , Niacinamida/farmacologia , Praguicidas/farmacologia , Pirimidinas/farmacologiaRESUMO
Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.
Assuntos
Abelhas/fisiologia , Polinização/fisiologia , Vibração , Animais , Estações do AnoRESUMO
As in many other locations in the world, honeybee colony losses and disorders have increased in Belgium. Some of the symptoms observed rest unspecific and their causes remain unknown. The present study aims to determine the role of both pesticide exposure and virus load on the appraisal of unexplained honeybee colony disorders in field conditions. From July 2011 to May 2012, 330 colonies were monitored. Honeybees, wax, beebread and honey samples were collected. Morbidity and mortality information provided by beekeepers, colony clinical visits and availability of analytical matrix were used to form 2 groups: healthy colonies and colonies with disorders (nâ=â29, nâ=â25, respectively). Disorders included: (1) dead colonies or colonies in which part of the colony appeared dead, or had disappeared; (2) weak colonies; (3) queen loss; (4) problems linked to brood and not related to any known disease. Five common viruses and 99 pesticides (41 fungicides, 39 insecticides and synergist, 14 herbicides, 5 acaricides and metabolites) were quantified in the samples.The main symptoms observed in the group with disorders are linked to brood and queens. The viruses most frequently found are Black Queen Cell Virus, Sac Brood Virus, Deformed Wing Virus. No significant difference in virus load was observed between the two groups. Three acaricides, 5 insecticides and 13 fungicides were detected in the analysed samples. A significant correlation was found between the presence of fungicide residues and honeybee colony disorders. A significant positive link could also be established between the observation of disorder and the abundance of crop surface around the beehive. According to our results, the role of fungicides as a potential stressor for honeybee colonies should be further studied, either by their direct and/or indirect impacts on bees and bee colonies.