Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Immunol ; 25(3): 462-470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278966

RESUMO

The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.


Assuntos
Anticorpos Biespecíficos , HIV-1 , Animais , Camundongos , Humanos , Células Matadoras Naturais , Citotoxicidade Imunológica , Morte Celular , Camundongos Transgênicos
2.
Nature ; 566(7742): 120-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700913

RESUMO

A stable latent reservoir for HIV-1 in resting CD4+ T cells is the principal barrier to a cure1-3. Curative strategies that target the reservoir are being tested4,5 and require accurate, scalable reservoir assays. The reservoir was defined with quantitative viral outgrowth assays for cells that release infectious virus after one round of T cell activation1. However, these quantitative outgrowth assays and newer assays for cells that produce viral RNA after activation6 may underestimate the reservoir size because one round of activation does not induce all proviruses7. Many studies rely on simple assays based on polymerase chain reaction to detect proviral DNA regardless of transcriptional status, but the clinical relevance of these assays is unclear, as the vast majority of proviruses are defective7-9. Here we describe a more accurate method of measuring the HIV-1 reservoir that separately quantifies intact and defective proviruses. We show that the dynamics of cells that carry intact and defective proviruses are different in vitro and in vivo. These findings have implications for targeting the intact proviruses that are a barrier to curing HIV infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Portador Sadio/virologia , Vírus Defeituosos/isolamento & purificação , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Provírus/isolamento & purificação , Latência Viral , Linfócitos T CD4-Positivos/citologia , Portador Sadio/terapia , Linhagem Celular , DNA Viral/análise , DNA Viral/genética , Vírus Defeituosos/genética , Vírus Defeituosos/fisiologia , Infecções por HIV/terapia , HIV-1/genética , HIV-1/fisiologia , Humanos , Ativação Linfocitária , Reação em Cadeia da Polimerase , Provírus/genética , Provírus/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110411

RESUMO

In persons living with HIV-1 (PLWH) who start antiretroviral therapy (ART), plasma virus decays in a biphasic fashion to below the detection limit. The first phase reflects the short half-life (<1 d) of cells that produce most of the plasma virus. The second phase represents the slower turnover (t1/2 = 14 d) of another infected cell population, whose identity is unclear. Using the intact proviral DNA assay (IPDA) to distinguish intact and defective proviruses, we analyzed viral decay in 17 PLWH initiating ART. Circulating CD4+ T cells with intact proviruses include few of the rapidly decaying first-phase cells. Instead, this population initially decays more slowly (t1/2 = 12.9 d) in a process that largely represents death or exit from the circulation rather than transition to latency. This more protracted decay potentially allows for immune selection. After ∼3 mo, the decay slope changes, and CD4+ T cells with intact proviruses decay with a half-life of 19 mo, which is still shorter than that of the latently infected cells that persist on long-term ART. Two-long-terminal repeat (2LTR) circles decay with fast and slow phases paralleling intact proviruses, a finding that precludes their use as a simple marker of ongoing viral replication. Proviruses with defects at the 5' or 3' end of the genome show equivalent monophasic decay at rates that vary among individuals. Understanding these complex early decay processes is important for correct use of reservoir assays and may provide insights into properties of surviving cells that can constitute the stable latent reservoir.


Assuntos
Antirretrovirais/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Provírus/efeitos dos fármacos , Vírion/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , DNA Viral/efeitos dos fármacos , Humanos , Estudos Longitudinais , Carga Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
4.
PLoS Pathog ; 18(9): e1010845, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074794

RESUMO

Antiretroviral therapy (ART) effectively inhibits HIV-1 replication but is not curative due to the persistence of a latent viral reservoir in resting CD4+ T cells. This reservoir is a major barrier to cure. Sequencing studies have revealed that the population of proviruses persisting in ART-treated individuals is dominated by defective proviruses that cannot give rise to viral rebound due to fatal defects including large deletions and APOBEC3-mediated hypermutation. Near full genome sequencing (nFGS) of individual proviruses is used in reservoir assays to provide an estimate of the fraction of proviruses that are intact. nFGS methods rely on a long-distance outer PCR capturing most (~9 kb) of the genome, followed by nested inner PCRs. The outer PCR is carried out at limit dilution, and interpretation of the results is based on the assumption that all proviruses are quantitatively captured. Here, we evaluate nFGS methods using the intact proviral DNA assay (IPDA), a multiplex digital droplet PCR assay that quantitates intact and defective proviruses with single molecule sensitivity using only short, highly efficient amplicons. We analyzed proviral templates of known sequence to avoid the additional complication of sequence polymorphism. With the IPDA, we quantitated molecular yields at each step of nFGS methods. We demonstrate that nFGS methods are inefficient and miss ~70% of full-length proviruses due to amplification failure at the initial outer PCR step. In contrast, proviruses with large internal deletions encompassing 70% of the genome can be quantitatively amplified under the same conditions. Accurate measurement of the latent reservoir of HIV-1 is essential for evaluating the efficacy of cure strategies, and the bias against full length proviruses in nFGS methods must be considered.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Linfócitos T CD4-Positivos , DNA Viral/genética , HIV-1/genética , Humanos , Provírus/genética , Carga Viral
5.
Trends Immunol ; 41(6): 466-480, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32414695

RESUMO

Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Ativação Linfocitária , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia
6.
Curr HIV/AIDS Rep ; 20(6): 428-439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955826

RESUMO

PURPOSE OF REVIEW: In this review, we discuss what persistent viremia has taught us about the biology of the HIV-1 reservoir during antiretroviral therapy (ART). We will also discuss the implications of this phenomenon for HIV-1 cure research and its clinical management. RECENT FINDINGS: While residual viremia (RV, 1-3 HIV-1 RNA copies/ml) can be detected in most of people on ART, some individuals experience non-suppressible viremia (NSV, > 20-50 copies/mL) despite optimal adherence. When issues of drug resistance and pharmacokinetics are ruled out, this persistent virus in plasma is the reflection of virus production from clonally expanded CD4+ T cells carrying proviruses. Recent work has shown that a fraction of the proviruses source of NSV are not infectious, due to defects in the 5'-Leader sequence. However, additional viruses and host determinants of NSV are not fully understood. The study of NSV is of prime importance because it represents a challenge for the clinical care of people on ART, and it sheds light on virus-host interactions that could advance HIV-1 remission research.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Infecções por HIV/tratamento farmacológico , Viremia/tratamento farmacológico , Linfócitos T CD4-Positivos , Provírus/genética , Carga Viral
7.
Proc Natl Acad Sci U S A ; 117(31): 18692-18700, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690683

RESUMO

A scalable approach for quantifying intact HIV-1 proviruses is critical for basic research and clinical trials directed at HIV-1 cure. The intact proviral DNA assay (IPDA) is a novel approach to characterizing the HIV-1 reservoir, focusing on the genetic integrity of individual proviruses independent of transcriptional status. It uses multiplex digital droplet PCR to distinguish and separately quantify intact proviruses, defined by a lack of overt fatal defects such as large deletions and APOBEC3G-mediated hypermutation, from the majority of proviruses that have such defects. This distinction is important because only intact proviruses cause viral rebound on ART interruption. To evaluate IPDA performance and provide benchmark data to support its implementation, we analyzed peripheral blood samples from 400 HIV-1+ adults on ART from several diverse cohorts, representing a robust sample of treated HIV-1 infection in the United States. We provide direct quantitative evidence that defective proviruses greatly outnumber intact proviruses (by >12.5 fold). However, intact proviruses are present at substantially higher frequencies (median, 54/106 CD4+ T cells) than proviruses detected by the quantitative viral outgrowth assay, which requires induction and in vitro growth (∼1/106 CD4+ T cells). IPDA amplicon signal issues resulting from sequence polymorphisms were observed in only 6.3% of individuals and were readily apparent and easily distinguished from low proviral frequency, an advantage of the IPDA over standard PCR assays which generate false-negative results in such situations. The large IPDA dataset provided here gives the clearest quantitative picture to date of HIV-1 proviral persistence on ART.


Assuntos
DNA Viral/sangue , Infecções por HIV , Provírus/genética , Latência Viral/genética , Adulto , Feminino , Infecções por HIV/sangue , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos
8.
Proc Natl Acad Sci U S A ; 117(50): 32066-32077, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33239444

RESUMO

In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Replicação Viral/imunologia , Adulto , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Transfusão de Sangue Autóloga/métodos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Terapia Combinada/métodos , Feminino , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/isolamento & purificação , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/uso terapêutico , Leucaférese , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
9.
Virol J ; 17(1): 4, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910871

RESUMO

Despite antiretroviral therapy (ART) which halts HIV-1 replication and reduces plasma viral load to clinically undetectable levels, viral rebound inevitably occurs once ART is interrupted. HIV-1-infected cells can undergo clonal expansion, and these clonally expanded cells increase over time. Over 50% of latent reservoirs are maintained through clonal expansion. The clonally expanding HIV-1-infected cells, both in the blood and in the lymphoid tissues, contribute to viral rebound. The major drivers of clonal expansion of HIV-1-infected cells include antigen-driven proliferation, homeostatic proliferation and HIV-1 integration site-dependent proliferation. Here, we reviewed how viral, immunologic and genomic factors contribute to clonal expansion of HIV-1-infected cells, and how clonal expansion shapes the HIV-1 latent reservoir. Antigen-specific CD4+ T cells specific for different pathogens have different clonal expansion dynamics, depending on antigen exposure, cytokine profiles and exhaustion phenotypes. Homeostatic proliferation replenishes the HIV-1 latent reservoir without inducing viral expression and immune clearance. Integration site-dependent proliferation, a mechanism also deployed by other retroviruses, leads to slow but steady increase of HIV-1-infected cells harboring HIV-1 proviruses integrated in the same orientation at specific sites of certain cancer-related genes. Targeting clonally expanding HIV-1 latent reservoir without disrupting CD4+ T cell function is a top priority for HIV-1 eradication.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Latência Viral , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/virologia , Humanos , Provírus , Carga Viral , Integração Viral , Replicação Viral
11.
Proc Natl Acad Sci U S A ; 113(7): 1883-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26858442

RESUMO

Reservoirs of infectious HIV-1 persist despite years of combination antiretroviral therapy and make curing HIV-1 infections a major challenge. Most of the proviral DNA resides in CD4(+)T cells. Some of these CD4(+)T cells are clonally expanded; most of the proviruses are defective. It is not known if any of the clonally expanded cells carry replication-competent proviruses. We report that a highly expanded CD4(+) T-cell clone contains an intact provirus. The highly expanded clone produced infectious virus that was detected as persistent plasma viremia during cART in an HIV-1-infected patient who had squamous cell cancer. Cells containing the intact provirus were widely distributed and significantly enriched in cancer metastases. These results show that clonally expanded CD4(+)T cells can be a reservoir of infectious HIV-1.


Assuntos
Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , Replicação Viral , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Dados de Sequência Molecular , Virulência
12.
Retrovirology ; 15(1): 21, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29433524

RESUMO

Antiretroviral therapy cannot cure HIV-1 infection due to the persistence of a small number of latently infected cells harboring replication-competent proviruses. Measuring persistent HIV-1 is challenging, as it consists of a mosaic population of defective and intact proviruses that can shift from a state of latency to active HIV-1 transcription. Due to this complexity, most of the current assays detect multiple categories of persistent HIV-1, leading to an overestimate of the true size of the latent reservoir. Here, we review the development of the viral outgrowth assay, the gold-standard quantification of replication-competent proviruses, and discuss the insights provided by full-length HIV-1 genome sequencing methods, which allowed us to unravel the composition of the proviral landscape. In this review, we provide a dissection of what defines HIV-1 persistence and we examine the unmet needs to measure the efficacy of interventions aimed at eliminating the HIV-1 reservoir.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Latência Viral , Replicação Viral , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Reservatórios de Doenças , Genoma Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Humanos , Ativação Linfocitária , Reação em Cadeia da Polimerase , Provírus/genética , RNA Viral , Carga Viral
13.
J Med Virol ; 86(2): 186-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24122963

RESUMO

Previous studies have attempted to explore the origin of the F1 subtype, but the precise origin of the Romanian and South American F1 variants remains controversial. As the F1 subtype is the most frequent non-B variant among Europeans residing in Italy, the aim of this study was to estimate its phylogeography in order to reconstruct its origin and route of dispersion. The phylogeographical analyses, which were made using the Bayesian Markov Chain Monte Carlo approach and BEAST software, revealed two significant clades: the first included all of the Romanian strains together with a few Italian and four African isolates; the second encompassed all of the South American sequences and the large majority of Italian variants. By putting the African reference sequences into two discrete groups based on specific countries, phylogeographic analysis indicated that the F1 epidemic originated in Cameroon/Democratic Republic of Congo in the early 1940s, and was exported to South America 10 years later. Subsequently, the F1 virus spread to Angola and, from there, was exported to Romania in the early 1960s. It reached Italy in the 1970s from South America and Romania. The South American and Romanian variants of F1 have different African countries of origin and different temporal spreads. The South American variant seems to be characterized by multiple introduction events, whereas the Romanian strain probably spread as a result of a single entry. Two different pathways from South America and Romania led the F1 variant to Italy in the 1970s.


Assuntos
Variação Genética , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , Filogeografia , África/epidemiologia , Europa (Continente)/epidemiologia , Genótipo , HIV-1/isolamento & purificação , Humanos , Epidemiologia Molecular , América do Sul/epidemiologia
14.
J Med Virol ; 86(5): 729-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24482324

RESUMO

The HIV-1 clade C is prevalent worldwide and spread from Africa to South East Asia and South America early in the course of the epidemic. As a consequence of migration waves about 13% of the Italian HIV-1 epidemic is sustained by this clade. Two hundred fifty-four C pol sequences from the Italian ARCA database collected during 1997-2011 were analyzed. Epidemiological networks and geographical fluxes were identified through phylogeny using Bayesian approaches. Patients' country of origin was Italy, Africa, South America, and South East Asia for 44.9%, 23.6%, 4.7%, and 1.6%, respectively. Heterosexuals and men having sex with men accounted for 83.2% and 16.8%, respectively. Modality of infection was distributed differently: heterosexuals were largely prevalent among Italians (84.1%) and Africans (95.3%), while men having sex with men predominated among South Americans (66.7%). Eight significant clusters encompassing 111 patients (43.7%) were identified. Comparison between clustering and non-clustering patients indicated significant differences in country of origin, modality of infection and gender. Men having sex with men were associated to a higher probability to be included in networks (70% for men having sex with men vs. 30.3% for heterosexuals). Phylogeography highlighted two significant groups. One contained Indian strains and the second encompassed South Americans and almost all Italian strains. Phylogeography indicated that the spread of C subtype among Italians is related to South American variant. Although Italian patients mainly reported themselves as heterosexuals, homo-bisexual contacts were likely their source of infection. Phylogenetic monitoring is warranted to guide public health interventions aimed at controlling HIV infection.


Assuntos
Infecções por HIV/epidemiologia , Infecções por HIV/transmissão , HIV-1/classificação , HIV-1/genética , Heterossexualidade , Homossexualidade , Filogeografia , Adulto , Animais , Análise por Conglomerados , Epidemias , Feminino , Genótipo , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , América do Sul/epidemiologia , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
15.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38270554

RESUMO

The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy as a barrier to cure. The antigen-driven proliferation of infected cells is a major mechanism of reservoir persistence. However, activation through the T cell antigen receptor (TCR) can induce latent proviruses, leading to viral cytopathic effects and immune clearance. In single-cell studies, we show that, relative to uninfected cells or cells with a defective provirus, CD4+ T cells with an intact provirus have a profound proliferative defect in response to TCR stimulation. Virion production was observed in only 16.5% of cultures with an intact provirus, but proliferation was reduced even when no virion production was detected. Proliferation was inversely correlated with in vivo clone size. These results may reflect the effects of previous in vivo proliferation and do not support attempts to reduce the reservoir with antiproliferative agents, which may have greater effects on normal T cell responses.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Linfócitos T CD4-Positivos , Latência Viral , Provírus , Receptores de Antígenos de Linfócitos T
16.
medRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405967

RESUMO

The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRß) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRß and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.

17.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961482

RESUMO

HIV can persist in a latent form as integrated DNA (provirus) in resting CD4+ T cells of infected individuals and as such is unaffected by antiretroviral therapy (ART). Despite being a major obstacle for eradication efforts, the genetic variation and timing of formation of this latent reservoir remains poorly understood. Previous studies on when virus is deposited in the latent reservoir have come to contradictory conclusions. To reexamine the genetic variation of HIV in CD4+ T cells during ART, we determined the divergence in envelope sequences collected from 10 SIV infected rhesus macaques. We found that the macaques displayed a biphasic decline of the viral divergence over time, where the first phase lasted for an average of 11.6 weeks (range 4-28 weeks). Motivated by recent observations that the HIV-infected CD4+ T cell population is composed of short- and long-lived subsets, we developed a model to study the divergence dynamics. We found that SIV in short-lived cells was on average more diverged, while long-lived cells harbored less diverged virus. This suggests that the long-lived cells harbor virus deposited starting earlier in infection and continuing throughout infection, while short-lived cells predominantly harbor more recent virus. As these cell populations decayed, the overall proviral divergence decline matched that observed in the empirical data. This model explains previous seemingly contradictory results on the timing of virus deposition into the latent reservoir, and should provide guidance for future eradication efforts.

18.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698927

RESUMO

BACKGROUNDHIV-1-infected CD4+ T cells contribute to latent reservoir persistence by proliferating while avoiding immune recognition. Integration features of intact proviruses in elite controllers (ECs) and people on long-term therapy suggest that proviruses in specific chromosomal locations can evade immune surveillance. However, direct evidence of this mechanism is missing.METHODSIn this case report, we characterized integration sites and full genome sequences of expanded T cell clones in an EC before and after chemoradiation. We identified the cognate peptide of infected clones to investigate cell proliferation and virus production induced by T cell activation, and susceptibility to autologous CD8+ T cells.RESULTSThe proviral landscape was dominated by 2 large clones with replication-competent proviruses integrated into zinc finger (ZNF) genes (ZNF470 and ZNF721) in locations previously associated with deeper latency. A third nearly intact provirus, with a stop codon in Pol, was integrated into an intergenic site. Upon stimulation with cognate Gag peptides, infected clones proliferated extensively and produced virus, but the provirus in ZNF721 was 200-fold less inducible. While autologous CD8+ T cells decreased the proliferation of cells carrying the intergenic provirus, they had no effect on cells with the provirus in the ZNF721 gene.CONCLUSIONSWe provide direct evidence that upon activation of infected clones by cognate antigen, the lower inducibility of intact proviruses in ZNF genes can result in immune evasion and persistence.FUNDINGOffice of the NIH Director and National Institute of Dental & Craniofacial Research; NIAID, NIH; Johns Hopkins University Center for AIDS Research.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , Linfócitos T CD4-Positivos , Células Clonais , Latência Viral
19.
Cell Host Microbe ; 31(3): 356-372.e5, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36809762

RESUMO

The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Macaca mulatta , Infecções por HIV/tratamento farmacológico , Provírus/genética , Linfócitos T CD4-Positivos , Carga Viral
20.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463049

RESUMO

HIV-1 persists in a latent reservoir in resting CD4+ T cells despite antiretroviral therapy (ART). The reservoir decays slowly over the first 7 years of ART (t1/2 = 44 months). However, whether decay continues with long-term ART is unclear. Recent integration site studies indicate gradual selection against inducible, intact proviruses, raising speculation that decades of ART might allow treatment interruption without viral rebound. Therefore, we measured the reservoir in 42 people on long-term ART (mean 22 years) using a quantitative viral outgrowth assay. After 7 years of ART, there was no long-term decrease in the frequency of inducible, replication-competent proviruses but rather an increase with an estimated doubling time of 23 years. Another reservoir assay, the intact proviral DNA assay, confirmed that reservoir decay with t1/2 of 44 months did not continue with long-term ART. The lack of decay reflected proliferation of infected cells. Most inducible, replication-competent viruses (79.8%) had env sequences identical to those of other isolates from the same sample. Thus, although integration site analysis indicates changes in reservoir composition, the proliferation of CD4+ T cells counteracts decay, maintaining the frequency of inducible, replication-competent proviruses at roughly constant levels over the long term. These results reinforce the need for lifelong ART.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Replicação Viral , Provírus/genética , Linfócitos T CD4-Positivos , Carga Viral , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA