Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 20(9): e3001310, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36126035

RESUMO

The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of spared as well as injured fibres, which need to sprout and/or regenerate to form new connections. Here, we have investigated whether the epigenetic stimulation of the regenerative gene expression program can overcome the current inability to promote neurological recovery in chronic SCI with severe disability. We delivered the CBP/p300 activator CSP-TTK21 or vehicle CSP weekly between week 12 and 22 following a transection model of SCI in mice housed in an enriched environment. Data analysis showed that CSP-TTK21 enhanced classical regenerative signalling in dorsal root ganglia sensory but not cortical motor neurons, stimulated motor and sensory axon growth, sprouting, and synaptic plasticity, but failed to promote neurological sensorimotor recovery. This work provides direct evidence that clinically suitable pharmacological CBP/p300 activation can promote the expression of regeneration-associated genes and axonal growth in a chronic SCI with severe neurological disability.


Assuntos
Regeneração Nervosa , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Camundongos , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo
2.
Neurobiol Dis ; 198: 106538, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38789057

RESUMO

Aging is the main risk factor of cognitive neurodegenerative diseases such as Alzheimer's disease, with epigenome alterations as a contributing factor. Here, we compared transcriptomic/epigenomic changes in the hippocampus, modified by aging and by tauopathy, an AD-related feature. We show that the cholesterol biosynthesis pathway is severely impaired in hippocampal neurons of tauopathic but not of aged mice pointing to vulnerability of these neurons in the disease. At the epigenomic level, histone hyperacetylation was observed at neuronal enhancers associated with glutamatergic regulations only in the tauopathy. Lastly, a treatment of tau mice with the CSP-TTK21 epi-drug that restored expression of key cholesterol biosynthesis genes counteracted hyperacetylation at neuronal enhancers and restored object memory. As acetyl-CoA is the primary substrate of both pathways, these data suggest that the rate of the cholesterol biosynthesis in hippocampal neurons may trigger epigenetic-driven changes, that may compromise the functions of hippocampal neurons in pathological conditions.


Assuntos
Doença de Alzheimer , Colesterol , Hipocampo , Camundongos Transgênicos , Neurônios , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Hipocampo/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Neurônios/metabolismo , Camundongos , Epigenômica , Epigênese Genética , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo , Envelhecimento/genética , Masculino , Proteínas tau/metabolismo , Proteínas tau/genética
3.
Pharmacol Res ; 132: 135-148, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29684672

RESUMO

The accumulation of somatic and genetic mutations which altered the structure and coding information of the DNA are the major cause of neurological disorders. However, our recent understanding of molecular mechanisms of 'epigenetic' phenomenon reveals that the modifications of chromatin play a significant role in the development and severity of neurological disorders. These epigenetic processes are dynamic and reversible as compared to genetic ablations which are stable and irreversible. Therefore, targeting these epigenetic processes through small molecule modulators are of great therapeutic potential. To date, large number of small molecule modulators have been discovered which are capable of altering the brain pathology by targeting epigenetic enzymes. In this review, we shall put forward the key studies supporting the role of altered epigenetic processes in neurological disorders with especial emphasis on neurodegenerative disorders. A few small molecule modulators which have been shown to possess promising results in the animal model system of neurological disorders will also be discussed with future perspectives.


Assuntos
Epigênese Genética , Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética
4.
ACS Chem Neurosci ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795032

RESUMO

TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.

5.
J Mater Chem B ; 10(6): 935-944, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35060592

RESUMO

Rare-earth ion-activated oxide phosphors are beneficial to overcome problems like photobleaching, reduced lifetime, and the blinking of organic dyes and quantum dots for bioimaging applications. In this work, we report that the phosphors Rb(Bi1-xEux)2Ti2NbO10 (0.025 ≤ x ≤ 0.2) exhibit an electric dipole moment induced sharp 5D0 → 7F2 transition upon blue light excitation with a luminescence lifetime of ∼1 ms. While the major drawback of Eu3+ activated compounds is the requirement of harmful UV excitation, interestingly, this solid solution exhibits a sharp and intense excitation peak at 465 nm (visible light) compared to 363 and 395 nm (UV region), making it viable for bioimaging applications. The sample with x = 0.125 reveals the highest emission intensity with a quantum yield of 10.5%. Temperature-dependent emission spectra of the sample (x = 0.125) reveal excellent thermal stability. The low cytotoxicity of this compound is confirmed by incubation in HeLa cells and SH-SY5Y neuroblastoma cells. The biocompatibility of the compound with SH-SY5Y and HEK293 cells was imaged via two-photon microscopy, indicating its potential for biomedical applications.


Assuntos
Európio , Substâncias Luminescentes , Compostos de Cálcio , Células HEK293 , Células HeLa , Humanos , Luz , Óxidos , Titânio
6.
J Med Chem ; 65(18): 12273-12291, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36074919

RESUMO

The enzyme p300, besides having acetyltransferase activity, can also catalyze other acylation modifications, whose physiological implications are still being investigated. Here, we report that the level of histone butyrylation increases globally as well as locally in the promoters of pro-adipogenic genes during adipogenesis. To delineate the role of p300-catalyzed butyrylation from acetylation in adipogenesis, we identified a semisynthetic derivative (LTK-14A) of garcinol, which specifically inhibited histone butyrylation without affecting acetylation. Treatment of 3T3L1 cells with LTK-14A abolished adipogenesis with downregulation of pro-adipogenic genes along with inhibition of H4K5 butyrylation. Administering LTK-14A to high-fat diet-fed and genetically obese db/db mice led to attenuation/decrease in their weight gain. The reduced obesity could be partially attributed to the inhibition of H4K5 butyrylation in adipocytes and liver. This report therefore not only, for the first time, causally links histone butyrylation with adipogenesis but also presents a probable candidate for anti-obesity therapeutics.


Assuntos
Adipogenia , Fármacos Antiobesidade , Células 3T3-L1 , Acetiltransferases , Acilação , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Catálise , Dieta Hiperlipídica , Histonas/metabolismo , Camundongos , Obesidade/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA