Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(34): e202300771, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37042487

RESUMO

Mesoionic carbenes (MIC) are a popular class of compound that are heavily investigated at the moment. The access to cationic MICs, and the ability of MICs to stabilize radicals are two highly attractive fields that have hardly been explored until now. Here the synthesis and characterisation of three different cationic azide-substituted 1,2,3-triazolium salts, used as building blocks for studying their reactivity towards triphenylphosphine are reported, where the reactivity is dependent on the nature of the starting triazolium salt. Furthermore, the cationic triazolium salts were used to develop a series of unsymmetrical MIC-triazene-NHC/MIC' compounds, which can be readily converted to the radical form either by electrochemical or chemical methods. These radicals, which display NIR electrochromism, were investigated using a battery of techniques such as electrochemistry, UV/Vis/NIR and EPR spectroelectrochemistry, and theoretical calculations. Interestingly, the MIC plays an important role in the stabilization of the triazenyl radical, particularly in a competitive role vis-à-vis their NHC counterparts. These results shed new light on the ability of MICs to stabilize radicals, and possibly also on their π-accepting ability.

2.
Chemistry ; 29(46): e202301246, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191067

RESUMO

In coordination chemistry and materials science, terpyridine ligands are of great interest, due to their ability to form stable complexes with a broad range of transition metal ions. We report three terpyridine ligands containing different perfluorocarbon (PFC) tails on the backbone and the corresponding FeII and CoII complexes. The CoII complexes display spin crossover close to ambient temperature, and the nature of this spin transition is influenced by the length of the PFC tail on the ligand backbone. The electrochemical properties of the metal complexes were investigated with cyclic voltammetry revealing one oxidation and several reduction processes. The fluorine-specific interactions were investigated by EPR measurements. Analysis of the EPR spectra of the complexes as microcrystalline powders and in solution reveals exchange-narrowed spectra without resolved hyperfine splittings arising from the 59 Co nucleus; this suggests complex aggregation in solution mediated by interactions of the PFC tails. Interestingly, addition of perfluoro-octanol in different ratios to the acetonitrile solution of the sample resulted in the disruption of the F ⋯ ${\cdots }$ F interactions of the tails. To the best of our knowledge, this is the first investigation of fluorine-specific interactions in metal complexes through EPR spectroscopy, as exemplified by exchange narrowing.

3.
Inorg Chem ; 59(2): 1355-1363, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31909598

RESUMO

"Chemical noninnocence" of metal-coordinated 2-picolylamine (PA) derivatives has been introduced upon its reaction with the metal precursor [RuII(Cl)(H)(CO)(PPh3)3] under basic conditions. This in effect leads to the facile formation of metalated amide, imine, ring-cyclized pyrrole, and an N-dealkylated congener based on the fine-tuning of an amine nitrogen (Namine) and a methylene center (Cα) at the PA backbone. It develops oxygenated L1' in 1 and cyclized L4' in 4 upon switching of the Namine substituent of PA from aryl to an electrophilic pent-3-en-2-one moiety. On the other hand, imposing the substituent at the Cα position of PA modifies its reactivity profile, leading to a dehydrogenation (2/3) or N-dealkylation (6) process. The divergent reactivity profile of metalated PA is considered to proceed through a common dianionic intermediate. Further, a competitive scenario of C-H bond functionalization of coordinated PA versus the ligand-exchange process has been exemplified in the presence of external electrophile such as benzyl bromide or methylene iodide. Authentication of the product formation as well as elucidation of the reaction pathway has been addressed by their crystal structures and spectroscopic features in conjunction with the transition-state (TS) theory.

4.
Inorg Chem ; 56(5): 2992-3004, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28207252

RESUMO

Redox series [LnRu(µ-DPPP)RuLn]k, H2DPPP = 2,5-dihydro-3,6-di-2-pyridylpyrrolo(3,4-c)pyrrole-1,4-dione and L = 2,4-pentanedionato (acac-), 2,2'-bipyridine (bpy), and 2-phenylazopyridine (pap), have been studied by voltammetry (CV, DPV), EPR, and UV-vis-NIR spectroelectrochemistry, supported by TD-DFT calculations. Crystal structure analysis and 1H NMR revealed oxidation states [(acac)2RuIII(µ-DPPP2-)RuIII(acac)2] and [(bpy)2RuII(µ-DPPP2-)RuII(bpy)2]2+ for the corresponding precursors, isolated as rac diastereomers. Oxidation was observed to occur mainly at the bridging ligand (DPPP2- → DPPP•-), whereas the site of reduction (DPPP, Ru, or L) depends on effects from the ancillary ligands L. The metal coordination of a derivative of the pigment forming 2,5-dihydro-pyrrolo(3,4-c)pyrrole-1,4-dione (DPP) dyes and the analysis of corresponding multistep redox series add to the previously recognized coordinative and electron transfer potential of dye molecules of the azo, indigo, anthraquinone, and formazanate type.

5.
Inorg Chem ; 55(16): 8160-73, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27482834

RESUMO

The article examines the newly designed and structurally characterized redox-active BIAN-derived [Ru(trpy)(R-BIAN)Cl]ClO4 ([1a]ClO4-[1c]ClO4), [Ru(trpy)(R-BIAN)(H2O)](ClO4)2 ([3a](ClO4)2-[3c](ClO4)2), and BIAO-derived [Ru(trpy)(BIAO)Cl]ClO4 ([2a]ClO4) (trpy = 2,2':6',2''-terpyridine, R-BIAN = bis(arylimino)acenaphthene (R = H (1a(+), 3a(2+)), 4-OMe (1b(+), 3b(2+)), 4-NO2 (1c(+), 3c(2+)), BIAO = [N-(phenyl)imino]acenapthenone). The experimental (X-ray, (1)H NMR, spectroelectrochemistry, EPR) and DFT/TD-DFT calculations of 1a(n)-1c(n) or 2a(n) collectively establish {Ru(II)-BIAN(0)} or {Ru(II)-BIAO(0)} configuration in the native state, metal-based oxidation to {Ru(III)-BIAN(0)} or {Ru(III)-BIAO(0)}, and successive electron uptake processes by the α-diimine fragment, followed by trpy and naphthalene π-system of BIAN or BIAO, respectively. The impact of the electron-withdrawing NO2 function in the BIAN moiety in 1c(+) has been reflected in the five nearby reduction steps within the accessible potential limit of -2 V versus SCE, leading to a fully reduced BIAN(4-) state in [1c](4-). The aqua derivatives ({Ru(II)-OH2}, 3a(2+)-3c(2+)) undergo simultaneous 2e(-)/2H(+) transfer to the corresponding {Ru(IV)═O} state and the catalytic current associated with the Ru(IV)/Ru(V) response probably implies its involvement in the electrocatalytic water oxidation. The aqua derivatives (3a(2+)-3c(2+)) are efficient and selective precatalysts in transforming a wide variety of alkenes to corresponding epoxides in the presence of PhI(OAc)2 as an oxidant in CH2Cl2 at 298 K as well as oxidation of primary, secondary, and heterocyclic alcohols with a large substrate scope with H2O2 as the stoichiometric oxidant in CH3CN at 343 K. The involvement of the {Ru(IV)═O} intermediate as the active catalyst in both the oxidation processes has been ascertained via a sequence of experimental evidence.

6.
ACS Omega ; 7(1): 837-843, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036750

RESUMO

Alkenes are known to undergo oxidation to radical cations and dications. The radical cations are often highly reactive and not stable under air. Herein, we report the synthesis, isolation, characterization, and molecular structure of an alkene-derived radical cation A, which is stable in air both in the solid state and in solution. The access to this compound was facilitated from E-diamino tri-substituted alkene B as a synthon for the synthesis of A through one-electron oxidation. The E-diamino tri-substituted alkene B was synthesized by the two-electron reduction of N,N'-1,2-propylene-bridged bis-2-phenyl-pyrrolinium cation C. Under two-electron oxidation, alkene B transforms back to cation C involving a double carbocation rearrangement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA