Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life (Basel) ; 13(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37511883

RESUMO

Nonunion (NU) is one of the most feared complications of femoral shaft fracture treatment. Femoral shaft fracture treatment is often linked with poor bone stock and reduced bone metabolism. In this paper, the goal is to carefully analyze the best treatment options for patients who developed nonunion after the intramedullary nailing of a femoral shaft fracture. A systematic review of the literature available in the PubMed, EMBASE and Cochran library databases was carried out, and 16 studies were included. Exclusion criteria included case reports and case series that do not have data about clinical outcomes or functional outcomes and included fewer than 10 patients. The reviewed data provide evidence for very good results about the treatment of this pathology with exchanging intramedullary nails or the implantation of a plate and screws (general healing rate of 96.3%). Moreover, the data support the utilization of autologous bone graft in order to stimulate the healing process. In conclusion, the choice between these two types of treatment must be guided by the type of pseudarthrosis that the patient presents. Additionally, bone grafting or growth factors promote bone regenerative processes, especially in patients with oligo-atrophic pseudoarthrosis.

2.
Pharmaceutics ; 14(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35890296

RESUMO

In regenerative medicine related to orthopedic conditions, mesenchymal stromal cells (MSCs) and their extracellular vesicles (EVs) have been proposed as innovative clinical options. The definition of EV-shuttled signals and their modulation under orthopedic settings, such as osteoarthritis (OA), is crucial for MSC-related research, both for basic science and for use in clinical settings, either as therapeutics or as producers of cell-free products such as EVs or secretome. The objective of this work is to compare the literature available on high-throughput EV-miRNA data obtained from adipose-derived MSCs (ASCs) in standard conditions or cultured in high levels of IFNγ, low-level inflammatory conditions mimicking OA synovial fluid (SF), and OA-SF. The first result was that both IFNγ and low-level inflammatory treatment led to an increase, whereas SF led to a reduction in EV release. Second, more than 200 EV-miRNAs were found to be shared across the different conditions. After a bioinformatics search through experimentally validated and OA-related targets, pathways and tissues, several miRNAs resulted in the restoration of cartilage and synovium stability and the homeostasis of inflammatory cells, including macrophages, promoting their switch towards an M2 anti-inflammatory phenotype. Third, IFNγ and especially SF culturing were able to modulate the overall EV-miRNA fingerprint, although the main molecular messages related to OA resulted conserved between treatments with the majority of modulations within 2-fold range. In conclusion, ASC EV-miRNAs may be modulated in their overall landscape by OA-related culturing conditions albeit resulted largely stable in their specific OA-protective signals allowing for a faster clinical translation of these new cell-free therapies for joint diseases.

3.
Front Med (Lausanne) ; 9: 992386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314003

RESUMO

The purpose of the present study is to predict by bioinformatics the activity of the extracellular vesicle (EV)-embedded micro RNA (miRNAs) secreted by cartilage cells (CCs), adipose tissue-derived- (ASCs), and bone marrow-derived stem cells (BMSCs) and verify their immunomodulatory potential supporting our bioinformatics findings to optimize the autologous cell-based therapeutic strategies for osteoarthritis (OA) management. Cells were isolated from surgical waste tissues of three patients who underwent total hip replacement, expanded and the EVs were collected. The expression of EV-embedded miRNA was evaluated with the QuantStudio 12 K Flex OpenArray® platform. Mientournet and ingenuity pathway analysis (IPA) were used for validated target prediction analysis and to identify miRNAs involved in OA and inflammation. Cells shared the expression of 325 miRNAs embedded in EVs and differed for the expression of a small number of them. Mienturnet revealed no results for miRNAs selectively expressed by ASCs, whereas miRNA expressed by CCs and BMSCs were putatively involved in the modulation of cell cycle, senescence, apoptosis, Wingless and Int-1 (Wnt), transforming growth factor beta (TGFß), vascular endothelial growth factor (VEGF), Notch, Hippo, tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1ß), insulin like growth factor 1 (IGF-1), RUNX family transcription factor 2 (RUNX2), and endochondral ossification pathways. Cartilage homeostasis, macrophages and T cells activity and inflammatory mediators were identified by IPA as targets of the miRNAs found in all the cell populations. Co-culture tests on macrophages and T cells confirmed the immuno-modulatory ability of CCs, ASCs, and BMSCs. The study findings support the rationale behind the use of cell-based therapy for the treatment of OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA