Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 631(8019): 134-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867047

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Assuntos
Aneuploidia , Cromossomos Humanos X , Células Clonais , Leucócitos , Mosaicismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doenças Autoimunes/genética , Bancos de Espécimes Biológicos , Segregação de Cromossomos/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Células Clonais/metabolismo , Células Clonais/patologia , Exoma/genética , Proteínas F-Box/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Leucemia/genética , Leucócitos/metabolismo , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética
2.
Nature ; 613(7944): 508-518, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653562

RESUMO

Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10-11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.


Assuntos
Doença , Frequência do Gene , Fenótipo , Humanos , Pessoa de Meia-Idade , Doença/genética , Estônia , Finlândia , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Metanálise como Assunto , Reino Unido , População Branca/genética
4.
Environ Microbiol ; 24(8): 3549-3564, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579036

RESUMO

The phyllosphere is an important microbial habitat and reservoir of organisms that modify plant health. Taphrina betulina is the causal agent of birch witches' broom disease. Taphrina species are dimorphic, infecting hosts in the filamentous form and residing in the host phyllosphere as non-infectious yeast. As such, they are expected to be found as resident yeasts on their hosts, even on healthy tissues; however, there is little experimental data supporting this supposition. With the aim of exploring the local infection ecology of T. betulina, we isolated yeasts from the phyllosphere of birch leaves, using three sample classes; infected leaves inside symptom-bearing branches, healthy leaves from symptom-free branches on symptom-bearing trees and leaves from symptom-free branches on symptom-free trees. Isolations yielded 224 yeast strains, representing 11 taxa, including T. betulina, which was the most common isolate and was found in all sample classes, including symptom-free samples. Genotyping revealed genetic diversity among these T. betulina isolates, with seven distinct genotypes differentiated by the markers used. Twenty-two representative T. betulina strains were selected for further study, revealing further phenotypic differences. These findings support that T. betulina is ubiquitous on birch and that individual trees host a diversity of T. betulina strains.


Assuntos
Betula , Doenças por Fitoplasmas , Filogenia , Doenças das Plantas , RNA Ribossômico 16S/genética , Saccharomyces cerevisiae/genética
5.
Mol Ecol ; 24(3): 628-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25545194

RESUMO

Poplars have widely been used for rhizoremediation of a broad range of organic contaminants for the past two decades. Still, there is a knowledge gap regarding the rhizosphere-associated bacterial communities of poplars and their dynamics during the remediation process. It is envisaged that a detailed understanding of rhizosphere-associated microbial populations will greatly contribute to a better design and implementation of rhizoremediation. To investigate the long-term succession of structural and catabolic bacterial communities in oil-polluted soil planted with hybrid poplar, we carried out a 2-year field study. Hybrid aspen (Populus tremula × Populus tremuloides) seedlings were planted in polluted soil excavated from an accidental oil-spill site. Vegetated and un-vegetated soil samples were collected for microbial community analyses at seven different time points during the course of 2 years and sampling time points were chosen to cover the seasonal variation in the boreal climate zone. Bacterial community structure was accessed by means of 16S rRNA gene amplicon pyrosequencing, whereas catabolic diversity was monitored by pyrosequencing of alkane hydroxylase and extradiol dioxygenase genes. We observed a clear succession of bacterial communities on both structural and functional levels from early to late-phase communities. Sphingomonas type extradiol dioxygenases and alkane hydroxylase homologs of Rhodococcus clearly dominated the early-phase communities. The high-dominance/low-diversity functional gene communities underwent a transition to low-dominance/high-diversity communities in the late phase. These results pointed towards increased catabolic capacities and a change from specialist to generalist strategy of bacterial communities during the course of secondary succession.


Assuntos
Bactérias/classificação , Biodiversidade , Poluição por Petróleo , Populus , Microbiologia do Solo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Citocromo P-450 CYP4A/genética , DNA Bacteriano/genética , Consórcios Microbianos , Oxigenases/genética , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA
6.
Anal Biochem ; 477: 38-40, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25513723

RESUMO

The standard digestion-ligation cloning method enables synthesis of large amounts of complementary DNA (cDNA) from a model organism facilitating study of the transcriptome. Here, we used cDNA amplification of the dimorphic yeast Taphrina betulina as an example of how a library construction protocol can significantly increase sequencing throughput. Two modification steps were introduced to the Evrogen standard Mint-2 protocol to improve its suitability for next-generation sequencing projects. We performed two partial Illumina MiSeq sequencing runs with the modified protocol: one with and one without biotin-purified primers. The results demonstrated that biotinylated libraries increased both accuracy and throughput of the modified protocol. Moreover, our sequencing results indicate that a sequence-specific miscall may affect the output of Illumina's MiSeq platform.


Assuntos
Ascomicetos/genética , Perfilação da Expressão Gênica/métodos , DNA Polimerase Dirigida por RNA/metabolismo , Análise de Sequência/métodos , Clonagem Molecular , Biblioteca Gênica
7.
medRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778285

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most commonly occurring clonal somatic alteration detected in the leukocytes of women, yet little is known about its genetic determinants or phenotypic consequences. To address this, we estimated mLOX in >900,000 women across eight biobanks, identifying 10% of women with detectable X loss in approximately 2% of their leukocytes. Out of 1,253 diseases examined, women with mLOX had an elevated risk of myeloid and lymphoid leukemias and pneumonia. Genetic analyses identified 49 common variants influencing mLOX, implicating genes with established roles in chromosomal missegregation, cancer predisposition, and autoimmune diseases. Complementary exome-sequence analyses identified rare missense variants in FBXO10 which confer a two-fold increased risk of mLOX. A small fraction of these associations were shared with mosaic Y chromosome loss in men, suggesting different biological processes drive the formation and clonal expansion of sex chromosome missegregation events. Allelic shift analyses identified alleles on the X chromosome which are preferentially retained, demonstrating that variation at many loci across the X chromosome is under cellular selection. A novel polygenic score including 44 independent X chromosome allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Collectively our results support a model where germline variants predispose women to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of subsequent clonal expansion.

8.
Appl Environ Microbiol ; 78(23): 8191-201, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22983972

RESUMO

The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy.


Assuntos
Agricultura/métodos , Bactérias/isolamento & purificação , Biota , Fusarium/isolamento & purificação , Microbiologia do Solo , Solo/química , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Carga Bacteriana , Contagem de Colônia Microbiana , Impressões Digitais de DNA , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fosfolipídeos/análise , Polimorfismo de Fragmento de Restrição
9.
IMA Fungus ; 12(1): 8, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741074

RESUMO

Protomyces is an understudied genus of yeast-like fungi currently defined as phytopathogens of only Umbelliferae and Compositae. Species relationships and boundaries remain controversial and molecular data are lacking. Of the 82 named Protomyces, we found few recent studies and six available cultures. We previously isolated Protomyces strains from wild Arabidopsis thaliana, a member of Brassicaceae, a family distant from accepted Protomyces hosts. We previously sequenced the genomes of all available Protomyces species, and P. arabidopsidicola sp. nov. strain C29, from Arabidopsis. Phylogenomics suggests this new species occupied a unique position in the genus. Genomic, morphological, and physiological characteristics distinguished P. arabidopsidicola sp. nov. from other Protomyces. Nuclear gene phylogenetic marker analysis suggests actin1 gene DNA sequences could be used with nuclear ribosomal DNA internal transcribed spacer sequences for rapid identification of Protomyces species. Previous studies demonstrated P. arabidopsidicola sp. nov. could persist on the Arabidopsis phyllosphere and Protomyces sequences were discovered on Arabidopsis at multiple sites in different countries. We conclude that the strain C29 represents a novel Protomyces species and propose the name of P. arabidopsidicola sp. nov. Consequently, we propose that Protomyces is not strictly associated only with the previously recognized host plants.

10.
Biodegradation ; 21(5): 771-84, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20182771

RESUMO

Sphingobium sp. HV3 described as an herbicide degrader harbours the pSKY4 plasmid, encoding an aromatic meta-pathway. The function of the plasmid was studied by Tn5 transposon mutagenesis and plasmid isolation and the degradation capacities of the HV3 strain were re-evaluated. Transcription of the tfdC from ortho-pathway was contrasted to the xylE and bphC of meta-pathway using real-time PCR. Cloning of the Tn5-insertion sites from the megaplasmid revealed genes for both aromatic and polyaromatic degradation. In the mutant Km24 strain the transposon was inserted to an ORF similar to the large subunit of ring hydroxylating dioxygenase, in the Km383 to a cis-biphenyl dihydrodiol dehydrogenase and in the Km187 and Km42 to a reductase component of a dioxygenase. A chlorocathecol ortho-pathway (10 kb) was amplified from the HV3 strain. The transcription of the tfdC was induced by 2,4-dichlorophenoxyacetic acid herbicide and m-xylene caused highest induction of both upper and lower aromatic meta-pathway genes. The detected novel degradation capacities (m-xylene, toluene, biphenyl, fluorene and phenanthrene) can be explained by the presence of functional meta-pathway genes in the pSKY4 megaplasmid. The characterization of the Sphingobium sp. HV3 improves our understanding of versatile catabolic bacteria unveiling roles of degradation pathways and plasmids in biodegradation.


Assuntos
Regulação Bacteriana da Expressão Gênica , Herbicidas/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Redes e Vias Metabólicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Biodegradação Ambiental , Catecóis/metabolismo , Clonagem Molecular , Elementos de DNA Transponíveis/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Eletroforese em Gel de Ágar , Genes Bacterianos/genética , Mutagênese/genética , Mutação/genética , Fenótipo , Filogenia , Plasmídeos/genética , Mapeamento por Restrição , Sphingomonadaceae/enzimologia , Fatores de Tempo
11.
FEMS Microbiol Ecol ; 58(1): 134-44, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16958914

RESUMO

For the determination of the catabolic community diversity that is related to biodegradation potential, we developed a protocol for the assessment of catabolic marker genes in polluted soils. Primers specific to upper pathway extradiol dioxygenase genes were designed which amplified a 469-bp product from Sphingomonas sp. HV3. The constructed primers were used in PCR amplification of upper pathway ring cleavage genes from DNA directly isolated from a mineral oil polluted landfill site, a mineral oil landfarming site and a birch rhizosphere-associated soil that was either artificially polluted with a PAH mixture or not polluted. Amplicons were cloned and subjected to restriction fragment length polymorphism analysis dividing the HhaI-digested products into operational taxonomic units. Altogether 26 different operational taxonomic units were detected with the sequence similarity to known catabolic genes of Alpha-, Beta-, and Gammaproteobacteria. Phylogenetic analysis divided the operational taxonomic units from the polluted soils into seven clusters. Two contained exclusively sequences with no close homologues in the database, therefore representing novel catabolic genes. This large proportion of novel extradiol sequences shows that there is an extensive unknown catabolic diversity in polluted environments.


Assuntos
Bactérias/enzimologia , Oxigenases/genética , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Poluição Ambiental , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Sphingomonas/enzimologia , Sphingomonas/genética
12.
Sci Rep ; 6: 39403, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004784

RESUMO

The genetic model plant Arabidopsis thaliana (arabidopsis) has been instrumental to recent advances in our understanding of the molecular function of the plant immune system. However, this work has not yet included plant associated and phytopathogenic yeasts largely due to a lack of yeast species known to interact with arabidopsis. The plant phylloplane is a significant habitat for neutral-residents, plant-growth and health-promoting species, and latent-pathogenic species. However, yeast phylloplane residents of arabidopsis remain underexplored. To address this, resident yeasts from the phyllosphere of wild arabidopsis collected in field conditions have been isolated and characterized. A total of 95 yeast strains representing 23 species in 9 genera were discovered, including potentially psychrophilic and pathogenic strains. Physiological characterization revealed thermotolerance profiles, sensitivity to the arabidopsis phytoalexin camalexin, the production of indolic compounds, and the ability to activate auxin responses in planta. These results indicate a rich diversity of yeasts present in the arabidopsis phylloplane and have created culture resources and information useful in the development of model systems for arabidopsis-yeast interactions.


Assuntos
Arabidopsis/microbiologia , Leveduras/isolamento & purificação , Arabidopsis/metabolismo , Ecossistema , Ácidos Indolacéticos/metabolismo , Folhas de Planta/microbiologia , Sesquiterpenos/metabolismo , Fitoalexinas
13.
Environ Pollut ; 158(5): 1680-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20022155

RESUMO

To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation.


Assuntos
Bactérias/metabolismo , Biodiversidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , RNA Ribossômico 16S/genética , Poluentes do Solo/farmacologia
14.
Environ Pollut ; 157(1): 341-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18675498

RESUMO

Two birch clones originating from metal-contaminated sites were exposed for 3 months to soils (sand-peat ratio 1:1 or 4:1) spiked with a mixture of polyaromatic hydrocarbons (PAHs; anthracene, fluoranthene, phenanthrene, pyrene). PAH degradation differed between the two birch clones and also by the soil type. The statistically most significant elimination (p < or = 0.01), i.e. 88% of total PAHs, was observed in the more sandy soil planted with birch, the clearest positive effect being found with Betula pubescens clone on phenanthrene. PAHs and soil composition had rather small effects on birch protein complement. Three proteins with clonal differences were identified: ferritin-like protein, auxin-induced protein and peroxidase. Differences in planted and non-planted soils were detected in bacterial communities by 16S rRNA T-RFLP, and the overall bacterial community structures were diverse. Even though both represent complex systems, trees and rhizoidal microbes in combination can provide interesting possibilities for bioremediation of PAH-polluted soils.


Assuntos
Betula/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Antracenos/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Betula/genética , Biodegradação Ambiental , Ecossistema , Fluorenos/metabolismo , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Polimorfismo de Fragmento de Restrição , Proteoma/efeitos dos fármacos , Pirenos/metabolismo , RNA Ribossômico 16S/genética , Solo/análise , Poluentes do Solo/análise
15.
ISME J ; 2(9): 968-81, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18563190

RESUMO

Genes encoding key enzymes of catabolic pathways can be targeted by DNA fingerprinting to explore genetic degradation potential in pristine and polluted soils. We performed a greenhouse microcosm experiment to elucidate structural and functional bacterial diversity in polyaromatic hydrocarbon (PAH)-polluted soil and to test the suitability of birch (Betula pendula) for remediation. Degradation of PAHs was analysed by high-performance liquid chromatography, DNA isolated from soil amplified and fingerprinted by restriction fragment length polymorphism (RFLP) and terminal restriction fragment length polymorphism (T-RFLP). Bacterial 16S rRNA T-RFLP fingerprinting revealed a high structural bacterial diversity in soil where PAH amendment altered the general community structure as well as the rhizosphere community. Birch augmented extradiol dioxygenase diversity in rhizosphere showing a rhizosphere effect, and further pyrene was more efficiently degraded in planted pots. Degraders of aromatic compounds upon PAH amendment were shown by the changed extradiol ring-cleavage community structure in soil. The RFLP analysis grouped extradiol dioxygenase marker genes into 17 distinct operational taxonomic units displaying novel phylogenetic clusters of ring-cleavage dioxygenases representing putative catabolic pathways, and the peptide sequences contained conserved amino-acid signatures of extradiol dioxygenases. A branch of major environmental TS cluster was identified as being related to Parvibaculum lavantivorans ring-cleavage dioxygenase. The described structural and functional diversity demonstrated a complex interplay of bacteria in PAH pollution. The findings improve our understanding of rhizoremediation and unveil the extent of uncharacterized enzymes and may benefit bioremediation research by facilitating the development of molecular tools to detect and monitor populations involved in degradative processes.


Assuntos
Bactérias/classificação , Betula/microbiologia , Biodiversidade , Oxigenases/biossíntese , Raízes de Plantas/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Bactérias/genética , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , Pirenos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA