Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Infect Dis ; 225(2): 238-242, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34664651

RESUMO

Human babesiosis caused by Babesia microti can be fatal in immunocompromised patients, and the currently used drugs are often ineffective. A recent study found that clofazimine clears B. microti Munich strain in immunocompromised mice. In the present study, we investigated the efficacies of clofazimine and 2-drug combinations involving clofazimine, atovaquone, and azithromycin against B. microti Peabody mjr strain in immunocompromised mice. Treatment with clofazimine alone, clofazimine plus azithromycin, and atovaquone plus azithromycin was ineffective and failed to eliminate the parasites completely, while a 44-day treatment with clofazimine plus atovaquone was highly effective and resulted in a radical cure.


Assuntos
Antibacterianos/uso terapêutico , Antiprotozoários/uso terapêutico , Atovaquona/uso terapêutico , Azitromicina/uso terapêutico , Babesia microti/efeitos dos fármacos , Babesiose/tratamento farmacológico , Clofazimina/uso terapêutico , Animais , Babesia microti/genética , Babesia microti/isolamento & purificação , Babesiose/imunologia , Quimioterapia Combinada , Humanos , Hospedeiro Imunocomprometido , Camundongos
2.
J Immunoassay Immunochem ; 42(6): 648-661, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34097577

RESUMO

Equine piroplasmosis is caused by apicomplexan parasites, namely, Babesia caballi and Theileria equi, which are transmitted to equids principally through ticks. To ascertain the exposure of equines to agents of equine piroplasms, we tested serum samples collected from horses (n = 272) and donkeys (n = 170) in North-Western Nigeria for the presence of antibodies against B. caballi and T. equi using IFAT and ELISA. The seroprevalence of T. equi in the horses determined using IFAT and ELISA was 48.89% and 45.96%, respectively, while for B. caballi, it was 6.3% and 0.4%, respectively. For T. equi, the seroprevalence based on IFAT and ELISA results in donkeys was 14.1% and 2.9%, respectively, while for B. caballi, the seroprevalence was 2.4% and 0.6%, respectively, for ELISA and IFAT. Mixed infection detected in the horses using IFAT and ELISA was 5.5% and 0.4%, respectively, while no mixed infection was observed in the donkeys. The seroprevalence of T. equi was significantly (P < .0001) higher than that of B. caballi in both horses and donkeys. Comparatively, the IFAT detected a greater number of piroplasm seropositive animals than ELISA, indicating a difference in their diagnostic accuracy. Findings from this study confirm the existence of equine piroplasms in both horses and donkeys in North-Western Nigeria and highlights the need for robust and effective control measures against the disease.


Assuntos
Doenças dos Cavalos , Animais , Babesiose/diagnóstico , Babesiose/epidemiologia , Bovinos , Coinfecção , Ensaio de Imunoadsorção Enzimática , Equidae , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/epidemiologia , Cavalos , Nigéria/epidemiologia , Estudos Soroepidemiológicos , Theileriose/diagnóstico , Theileriose/epidemiologia
3.
J Infect Dis ; 222(6): 1027-1036, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32310272

RESUMO

BACKGROUND: Persistent and relapsing babesiosis caused by Babesia microti often occurs in immunocompromised patients, and has been associated with resistance to antimicrobial agents such as atovaquone. Given the rising incidence of babesiosis in the United States, novel drugs are urgently needed. In the current study, we tested whether clofazimine (CFZ), an antibiotic used to treat leprosy and drug-resistant tuberculosis, is effective against B. microti. METHODS: Mice with severe combined immunodeficiency were infected with 107B. microti-infected erythrocytes. Parasites were detected by means of microscopic examination of Giemsa-stained blood smears or nested polymerase chain reaction. CFZ was administered orally. RESULTS: Uninterrupted monotherapy with CFZ curtailed the rise of parasitemia and achieved radical cure. B. microti parasites and B. microti DNA were cleared by days 10 and 50 of therapy, respectively. A 7-day administration of CFZ delayed the rise of parasitemia by 22 days. This rise was caused by B. microti isolates that did not carry mutations in the cytochrome b gene. Accordingly, a 14-day administration of CFZ was sufficient to resolve high-grade parasitemia caused by atovaquone-resistant B. microti parasites. CONCLUSIONS: Clofazimine is effective against B. microti infection in the immunocompromised host. Additional preclinical studies are required to identify the minimal dose and dosage of CFZ for babesiosis.


Assuntos
Babesia microti/efeitos dos fármacos , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Clofazimina/uso terapêutico , Hospedeiro Imunocomprometido , Hansenostáticos/uso terapêutico , Sequência de Aminoácidos , Animais , Babesia microti/genética , Babesia microti/imunologia , Babesiose/imunologia , Clofazimina/administração & dosagem , Clofazimina/efeitos adversos , Citocromos b/química , Citocromos b/genética , DNA de Protozoário , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Eritrócitos/parasitologia , Hansenostáticos/administração & dosagem , Hansenostáticos/efeitos adversos , Camundongos , Parasitemia/parasitologia , Resultado do Tratamento
4.
Parasitology ; 147(11): 1238-1248, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32605687

RESUMO

Babesia caballi and Theileria equi are biological agents responsible for equine piroplasmosis (EP). We conducted a robust and extensive epidemiological study in Nigeria on the prevalence and risk factors of EP. Blood (468, both horses and donkeys) and ticks (201 pools) were screened using polymerase chain reaction (PCR). DNA of equine piroplasms was observed in tick pools with B. caballi amplified in Rhipicephalus evertsi evertsi only [minimum infection rate (MIR) of 7.6%] while T. equi was observed in R. e. evertsi (MIR, 61.6%), Hyalomma dromedarii (MIR, 23.7%) and H. truncatum (MIR, 50.0%). Overall results showed that 196/468 (41.9%) animals were positive for equine piroplasms (both B. caballi and T. equi). The prevalence for T. equi was 189/468 (40.4%) compared to 7/468 (1.5%) for B. caballi. In the horses and donkeys, respectively, the prevalence for T. equi was (39.9%; 112/281) and (41.2%; 77/187) compared with (1.4%; 4/281) and (1.6%; 3/187) due to B. caballi. Our analysis showed that location (Jigawa state), Talon breed, horses used for work and reproduction, unsatisfactory husbandry practices, contact with other mammals are risk factors that associated positivity to T. equi infection in horses, whilst horses kept on intensive management appeared to be less prone to infection. On the other hand, Jangora breed of donkeys and location (Jigawa state) are risk factors to infection with T. equi in donkeys. Findings suggest the persistence of EP in equids and ticks in Nigeria.


Assuntos
Babesia , Cavalos/parasitologia , Theileria , Carrapatos/parasitologia , Animais , Vetores Aracnídeos/parasitologia , Babesia/genética , Babesia/isolamento & purificação , Babesiose/epidemiologia , Sangue/parasitologia , Bovinos , Equidae/parasitologia , Genes de Protozoários , Doenças dos Cavalos/epidemiologia , Nigéria/epidemiologia , Patologia Molecular , Filogenia , Prevalência , Fatores de Risco , Theileria/genética , Theileria/isolamento & purificação , Theileriose/epidemiologia
5.
Parasitol Res ; 118(6): 1927-1935, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31055671

RESUMO

Trypanosoma (Megatrypanum) theileri is a cosmopolitan, usually non-pathogenic, trypanosome of cattle transmitted by blood-sucking arthropods, mainly tabanid flies. Several T. theileri strains isolated from domestic and wild ruminants via co-culturing with mammalian feeder cells or blood cells have been characterized morphologically and genetically. Here, we cultured a new trypanosome isolate from a Holstein cow in Hokkaido, Japan, and performed morphological and molecular characterization studies. The new isolate (Obihiro strain) was co-cultivated with Madin-Darby bovine kidney (MDBK) cells in GIT medium supplemented with 10% fetal bovine serum. Trypomastigotes and epimastigotes, but not intracellular parasites, were identified in the culture. Analysis of the V7-V8 region of 18S rRNA sequences showed that the Obihiro strain is positioned within the subgenus Megatrypanum. A dendrogram based on whole internal transcribed spacer rDNA sequence showed that the Obihiro strain clustered in the lineage TthII together with the Japanese isolates of T. theileri, Esashi 9, and Esashi 12, and isolates from Zambia and the USA. T. theileri of the KM strain and a T. theileri-like trypanosome isolated from deer (TSD1 strain) clustered in the lineage TthI, separate from the Obihiro strain. Based on a partial cathepsin L-like protein gene analysis, the Obihiro strain clustered with isolates of the TthIIF genotype, which includes T. theileri from Vietnam, Sri Lanka, and Brazil. Our analyses of the T. theileri Obihiro strain provide relevant insights into its genetic diversity in Japanese cattle and corroborate the host specificity of cattle and deer trypanosomes of the subgenus Megatrypanum.


Assuntos
Doenças dos Bovinos/parasitologia , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase/veterinária , Animais , Catepsina L/genética , Bovinos , Linhagem Celular , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Cervos/parasitologia , Feminino , Genótipo , Especificidade de Hospedeiro , Japão , Filogenia , RNA Ribossômico 18S/genética , Trypanosoma/isolamento & purificação , Tripanossomíase/parasitologia
6.
J Clin Microbiol ; 56(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158190

RESUMO

Bovine babesiosis is a serious threat to the cattle industry. We prepared blood DNA samples from 13 cattle with clinical babesiosis from the Badulla (n = 8), Jaffna (n = 3), and Kilinochchi (n = 2) districts in Sri Lanka. These DNA samples tested positive in PCR assays specific for Babesiabovis (n = 9), Babesia bigemina (n = 9), and Babesiaovata (n = 1). Twelve cattle were positive for B. bovis and/or B. bigemina One cow was negative for the tested Babesia species but was positive for Babesia on microscopic examination; the phylogenetic positions of 18S rRNA and cytochrome oxidase subunit III gene sequences suggested that the cow was infected with Babesia sp. Mymensingh, which was recently reported from a healthy cow in Bangladesh. We then developed a novel Babesia sp. Mymensingh-specific PCR assay and obtained positive results for one other sample. Analysis of gene sequences from the cow with positive B. ovata-specific PCR results demonstrated that the animal was infected not with B. ovata but with Babesia sp. Hue-1, which was recently reported from asymptomatic cattle in Vietnam. The virulence of Babesia sp. Hue-1 is unclear, as the cow was coinfected with B. bovis and B. bigemina However, Babesia sp. Mymensingh probably causes severe clinical babesiosis, as it was the sole Babesia species detected in a clinical case. The present study revealed the presence of two bovine Babesia species not previously reported in Sri Lanka, plus the first case of severe bovine babesiosis caused by a Babesia species other than B. bovis, B. bigemina, and Babesiadivergens.


Assuntos
Babesia/genética , Babesia/isolamento & purificação , Babesiose/microbiologia , Doenças dos Bovinos/microbiologia , Animais , Babesia/classificação , Babesia/citologia , Babesia bovis/genética , Babesia bovis/isolamento & purificação , Babesiose/epidemiologia , Babesiose/patologia , Babesiose/fisiopatologia , Bovinos , Doenças dos Bovinos/patologia , Doenças dos Bovinos/fisiopatologia , DNA de Protozoário/genética , Feminino , Filogenia , Reação em Cadeia da Polimerase/veterinária , Proteínas de Protozoários/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA/veterinária , Sri Lanka/epidemiologia
7.
Antimicrob Agents Chemother ; 60(5): 2739-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883713

RESUMO

The present study evaluated the growth-inhibitory effects of clofazimine, currently used for treating leprosy, against Babesia bovis, B. bigemina, B. caballi, and Theileria equi in in vitro culture and against Babesia microti in mice. The 50% inhibitory concentrations (IC50s) of clofazimine against the in vitro growth of B. bovis, B. bigemina, B. caballi, and T. equi were 4.5, 3, 4.3, and 0.29 µM, respectively. In mice infected with B. microti, treatment with 20 mg/kg of body weight of clofazimine administered orally resulted in a significantly lower peak parasitemia (5.3%) than that in the control group (45.9%), which was comparable to the subcutaneous administration of 25 mg/kg diminazene aceturate, the most widely used treatment for animal piroplasmosis. Although slight anemia was observed in both clofazimine- and diminazene aceturate-treated infected mice, the level and duration of anemia were lower and shorter, respectively, than those in untreated infected mice. Using blood transfusions and PCR, we also examined whether clofazimine completely killed B. microti On day 40 postinfection, when blood analysis was performed, parasites were not found in blood smears; however, the DNA of B. microti was detected in the blood of clofazimine-treated animals and in several tissues of clofazimine- and diminazene aceturate-treated mice by PCR. The growth of parasites was observed in mice after blood transfusions from clofazimine-treated mice. In conclusion, clofazimine showed excellent inhibitory effects against Babesia and Theileria in vitro and in vivo, and further study on clofazimine is required for the future development of a novel chemotherapy with high efficacy and safety against animal piroplasmosis and, possibly, human babesiosis.


Assuntos
Antimaláricos/uso terapêutico , Babesia/efeitos dos fármacos , Babesia/patogenicidade , Clofazimina/uso terapêutico , Theileria/efeitos dos fármacos , Theileria/patogenicidade , Animais , Eritrócitos/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Reação em Cadeia da Polimerase
8.
Exp Parasitol ; 166: 10-5, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26965399

RESUMO

Babesia bovis is an apicomplexan hemoprotozoan that can invade bovine red blood cells (RBCs), where it multiplies asexually. RBC invasion assays using free viable merozoites are now routinely used to understand the invasion mechanism of B. bovis, and to evaluate the efficacy of chemicals and antibodies that potentially inhibit RBC invasion by the parasite. The application of high-voltage pulses (high-voltage electroporation), a commonly used method to isolate free merozoites from infected RBCs, reduces the viability of the merozoites. Recently, a cold treatment of B. bovis in vitro culture was found to induce an effective release of merozoites from the infected RBCs. In the present study, we incubated in vitro cultures of B. bovis in an ice bath to liberate merozoites from infected RBCs and then evaluated the isolated merozoites in RBC invasion and invasion-inhibitions assays. The viability of the purified merozoites (72.4%) was significantly higher than that of merozoites isolated with high-voltage electroporation (48.5%). The viable merozoites prepared with the cold treatment also invaded uninfected bovine RBCs at a higher rate (0.572%) than did merozoites prepared with high-voltage electroporation (0.251%). The invasion-blocking capacities of heparin, a polyclonal rabbit antibody directed against recombinant B. bovis rhoptry associated protein 1, and B. bovis-infected bovine serum were successfully demonstrated in an RBC invasion assay with the live merozoites prepared with the cold treatment, suggesting that the targets of these inhibitors were intact in the merozoites. These findings indicate that the cold treatment technique is a useful tool for the isolation of free, viable, invasion-competent B. bovis merozoites, which can be effectively used for RBC invasion and invasion-inhibition assays in Babesia research.


Assuntos
Babesia bovis/fisiologia , Temperatura Baixa , Eritrócitos/parasitologia , Animais , Anticorpos Antiprotozoários/imunologia , Anticoagulantes/farmacologia , Babesia bovis/imunologia , Babesiose/parasitologia , Bovinos , Centrifugação com Gradiente de Concentração , Eletroporação , Feminino , Heparina/farmacologia , Merozoítos/fisiologia , Parasitemia/parasitologia , Coelhos
9.
Antimicrob Agents Chemother ; 58(8): 4713-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24914124

RESUMO

In vitro evaluation of chemotherapeutic agents against Babesia and Theileria parasites has become routine, and the effectiveness of these chemicals is usually determined by comparing the parasitemia dynamics of untreated and treated parasites. Although microscopy is widely used to calculate parasitemia, several disadvantages are associated with this technique. The present study evaluated a fluorescence-based method using SYBR green I stain (SG I) to screen antibabesial agents in in vitro cultures of Babesia bovis. The linearity between relative fluorescence units (RFU) and parasitemia was found to be well correlated with a 0.9944 goodness-of-fit (r(2)) value. Subsequently, 50% inhibitory concentration (IC50) values were calculated for 3 antiprotozoan agents, diminazene aceturate, nimbolide, and gedunin, by this method. For diminazene aceturate and nimbolide, the IC(50)s determined by the fluorescence-based method (408 nM and 8.13 µM, respectively) and microscopy (400.3 nM and 9.4 µM, respectively) were in agreement. Furthermore, the IC50 of gedunin determined by the fluorescence-based method (19 µM) was similar to the recently described microscopy-based value (21.7 µM) for B. bovis. Additionally, the Z' factor (0.80 to 0.90), signal-to-noise (S/N) ratio (44.15 to 87.64), coefficient of variation at the maximum signal (%CVmax) (0.50 to 2.85), and coefficient of variation at the minimum signal (%CVmin) (1.23 to 2.21) calculated for the fluorescence method using diminazene aceturate were comparable to those previously determined in malaria research for this assay. These findings suggest that the fluorescence-based method might be useful for antibabesial drug screening and may have potential to be developed into a high-throughput screening (HTS) assay.


Assuntos
Antiprotozoários/farmacologia , Babesia bovis/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Parasitária , Babesia bovis/crescimento & desenvolvimento , Benzotiazóis , Diaminas , Diminazena/análogos & derivados , Diminazena/farmacologia , Fluorescência , Corantes Fluorescentes/química , Concentração Inibidora 50 , Limoninas/farmacologia , Compostos Orgânicos/química , Quinolinas , Razão Sinal-Ruído , Espectrometria de Fluorescência
10.
Infect Genet Evol ; 119: 105571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365128

RESUMO

Equine piroplasmosis is a tick-borne disease caused by Theileria equi and Babesia caballi in horses. Because of its impact on horse industry, control of this disease is crucial for endemic countries. The control of equine piroplasmosis may be influenced by the genotypic diversity of T. equi and B. caballi. Mongolia, a country with a thriving livestock industry, is endemic for T. equi and B. caballi. However, nationwide epidemiological surveys have not been conducted to determine the current status of infections and genetic diversity of these two parasite species. Therefore, the objective of this research was to investigate the infection rates and genotypes of T. equi and B. caballi in horses across Mongolia. Blood samples were collected from 1353 horses in 15 of Mongolia's 21 provinces, and their DNAs were analyzed with T. equi- and B. caballi-specific PCR assays. Additionally, blood smears were prepared from 251 horses, stained with Giemsa, and examined under a light microscope to identify T. equi and B. caballi. The microscopy revealed that 30 (11.9%) and 4 (1.6%) of the 251 horses were positive for T. equi and B. caballi, respectively. By contrast, PCR assays detected the T. equi and B. caballi in 1058 (78.2%) and 62 (4.6%) horses, respectively. Phylogenetic analysis of 18S rRNA sequences from 42 randomly selected T. equi-positive DNA samples detected the genotypes A and E. On the other hand, the rap-1 sequences from 19 randomly selected B. caballi-positive DNA samples occurred in clades representing the genotypes A and B1, as well as in a distinct clade closely related to the genotype A. Our findings confirm the widespread occurrence of T. equi and B. caballi infections in Mongolian horses, highlighting the need for a comprehensive control approach.


Assuntos
Babesia , Babesiose , Doenças dos Cavalos , Theileria , Theileriose , Bovinos , Cavalos/genética , Animais , Babesia/genética , Theileria/genética , Babesiose/parasitologia , Theileriose/epidemiologia , Theileriose/parasitologia , Filogenia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/parasitologia , DNA de Protozoário/genética , Variação Genética
11.
Parasitol Int ; 102: 102915, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914218

RESUMO

Equine piroplasmosis is caused by Theileria equi and Babesia caballi, which are hemoprotozoan parasites. Understanding the epidemiology and genotypes of T. equi and B. caballi is crucial for developing effective control strategies in endemic countries. However, the endemic status of these two parasite species remains uncertain in Kyrgyzstan due to lack of surveys. Our study, therefore, aimed to detect T. equi and B. caballi infections in Kyrgyzstan and identify their genotypes. Blood samples were collected from 226 horses across all seven provinces of Kyrgyzstan, namely Chuy, Issyk-Kul, Naryn, Talas, Jalal-Abad, Osh, and Batken. These blood samples were subjected to DNA extraction, followed by specific PCR assays targeting T. equi and B. caballi. We found that 56 (24.8%, confidence interval (CI): 19.6-30.8%) and 7 (3.1%, CI: 1.5-6.3%) of the tested horses were positive for T. equi and B. caballi infections, respectively. Theileria equi was detected in all surveyed provinces, whereas B. caballi was found in five provinces, except for Talas and Osh. Subsequent genotype-specific PCR assays showed that T. equi-positive horses harbored all five genotypes: A, B, C (also known as Theileria haneyi), D, and E. On the other hand, phylogenetic analysis of B. caballi rap-1 sequences detected the genotypes A and B1. The prevalence of T. equi and B. caballi suggests a potential risk of clinical equine piroplasmosis among horses in Kyrgyzstan, and the observed genotypic diversity underscores the challenges in managing the disease. Our findings emphasize the need for comprehensive control measures to effectively address equine piroplasmosis in Kyrgyzstan.

12.
Vet Parasitol Reg Stud Reports ; 39: 100835, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878622

RESUMO

Equine piroplasmosis (EP) is a tick-borne disease caused by Theileria equi and Babesia caballi in equids, including horses. EP has a global distribution and often leads to a significant socioeconomic impact on the equine industry. Infected animals remain as carriers and become a source of infection for tick vectors, thereby posing an immense challenge in the disease management. Therefore, detection of these carriers is crucial to assess the risk of transmission and to implement appropriate control measures in endemic countries. Paraguay is a tropical country where various tick-borne diseases are common among livestock; however, the status of EP remains unknown in this country. Because the tick vectors capable of transmitting T. equi and B. caballi are endemic in Paraguay, we hypothesised that Paraguayan horses are infected with these parasite species. To test our hypothesis, we prepared blood DNA samples from a total of 545 apparently healthy horses in 16 of the 17 departments of Paraguay and analysed them with specific PCR assays to detect T. equi and B. caballi. The PCR results showed that 178 (32.7%) and 8 (1.5%) of the horses were infected with T. equi and B. caballi, respectively. Among the infected horses, two (0.4%) were infected with both parasite species. Our analyses further indicated that the positive rates of T. equi infection did not differ between horse breeds, males and females, or age groups. We also found that haematological parameters were the same between the non-infected animals and animals with single infections. By contrast, the two horses co-infected with T. equi and B. caballi had haemoglobin and haematocrit values lower than the normal ranges. In conclusion, the present study demonstrated that Paraguayan horses are infected with T. equi and B. caballi and that the rate of T. equi infection is higher than that of B. caballi. Our findings highlight the need to add EP to the list of differential diagnoses when anaemic horses are presented to equine clinics in Paraguay.


Assuntos
Babesia , Theileria , Feminino , Masculino , Cavalos , Animais , Babesia/genética , Paraguai/epidemiologia , Theileria/genética , Reação em Cadeia da Polimerase/veterinária , Gado
13.
Mol Biochem Parasitol ; 255: 111576, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315901

RESUMO

Babesia bovis, an intraerythrocytic hemoprotozoan parasite, causes the most pathogenic form of bovine babesiosis, negatively impacting the cattle industry. Comprehensive knowledge of B. bovis biology is necessary for developing control methods. In cattle, B. bovis invades the red blood cells (RBCs) and reproduces asexually. Micronemal proteins, which bind to sialic acid of host cells via their microneme adhesive repeat (MAR) domains, are believed to play a key role in host cell invasion by apicomplexan parasites. In this study, we successfully deleted the region encoding MAR domain of the BBOV_III011730 by integrating a fusion gene of enhanced green fluorescent protein-blasticidin-S-deaminase into the genome of B. bovis. The transgenic B. bovis, lacking the MAR domain of the BBOV_III011730, invaded bovine RBCs in vitro and grew at rates similar to the parental line. In conclusion, our study revealed that the MAR domain is non-essential for the intraerythrocytic development of B. bovis in vitro.


Assuntos
Babesia bovis , Babesiose , Doenças dos Bovinos , Animais , Bovinos , Babesia bovis/genética , Babesia bovis/metabolismo , Micronema , Babesiose/parasitologia , Eritrócitos/parasitologia , DNA/metabolismo , Doenças dos Bovinos/parasitologia
14.
J Parasitol ; 109(5): 480-485, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37713533

RESUMO

Yak (Bos grunniens) farming is an important part of Mongolia's livestock industry. Yaks survive in harsh mountain environments; provide meat, milk, and wool; and serve as a mode of transportation. In Mongolia, yaks are frequently raised alongside other livestock animals such as cattle, Bactrian camels, sheep, goats, and horses. Recently, we demonstrated that Babesia bovis, Babesia bigemina, and Babesia naoakii-parasites with the potential to cause clinical bovine babesiosis-infect not only cattle but also Bactrian camels in Mongolia. However, yaks have never been surveyed for Babesia infections in this country. In the present study, we surveyed yaks in 8 Mongolian provinces: Bayankhongor, Bayan-Ulgii, Khovd, Khovsgol, Omnogovi, Ovorkhangai, Uvs, and Zavkhan. Blood samples were taken and deoxyribonucleic acid (DNA) was extracted from 375 yaks. Furthermore, Giemsa-stained thin smears were prepared from 315 of the 375 blood samples and then examined for the microscopic detection of Babesia parasites. Microscopy revealed that 34 (10.8%) of 315 blood smears were positive for Babesia parasites. All 375 DNA samples were then tested for B. bovis, B. bigemina, and B. naoakii infection using specific polymerase chain reaction assays. We observed that 238 (63.5%) yaks in all surveyed provinces and 8 (2.1%) yaks in 3 provinces (Bayankhongor, Bayan-Ulgii, and Omnogovi) were positive for B. bovis and B. bigemina, respectively. However, all yaks tested were negative for B. naoakii. This epidemiological survey, the first to report Babesia infection in Mongolian yaks, suggests that disease management strategies for yaks in this country should further address bovine babesiosis.


Assuntos
Babesia , Babesiose , Bovinos , Animais , Cavalos , Ovinos , Babesia/genética , Babesiose/epidemiologia , Mongólia/epidemiologia , Camelus , Gerbillinae , Cabras , Gado , DNA
15.
Parasitol Int ; 97: 102791, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544641

RESUMO

Cattle production is a major contributor to the national economy of Kyrgyzstan. Most cattle in Kyrgyzstan are managed via extensive systems and graze in communal pastures. As a result, infestations with ectoparasites are widespread, implying that various vector-borne diseases might be common in cattle. However, methods to control such infectious diseases are not available in Kyrgyzstan because the epidemiology of vector-borne pathogens (VBPs) infecting cattle remains unclear. The present study was therefore designed to survey Kyrgyz cattle for VBPs. We prepared blood DNA samples from 319 cattle in Kyrgyzstan and screened them with specific PCR assays for detecting Babesia bovis, Babesia bigemina, Babesia naoakii, Theileria annulata, Theileria orientalis, Trypanosoma evansi, Trypanosoma theileri, and Anaplasma marginale infections. Our findings indicated that the surveyed cattle were infected with six of the eight pathogens targeted, with the exceptions being B. naoakii and Try. evansi. The most common pathogen was T. orientalis (84.3%), followed by B. bigemina (47.6%), T. annulata (16.6%), A. marginale (11.6%), Try. theileri (7.2%), and B. bovis (2.5%). Additional screening of the B. bovis- and B. bigemina-negative samples with a Babesia genus-specific 18S rRNA PCR identified two positive samples, and sequencing analysis confirmed that each of them was infected with either Babesia major or Babesia occultans. To the best of our knowledge, this is the first report of B. bovis, B. bigemina, B. occultans, Try. theileri, and A. marginale infections in cattle in Kyrgyzstan. Our findings suggest that cattle in Kyrgyzstan are at high risk of infectious diseases caused by VBPs.


Assuntos
Anaplasma marginale , Anaplasmose , Babesia , Babesiose , Doenças dos Bovinos , Doenças Transmissíveis , Theileria annulata , Theileria , Theileriose , Bovinos , Animais , Babesiose/parasitologia , Doenças dos Bovinos/parasitologia , Quirguistão/epidemiologia , Babesia/genética , Anaplasmose/epidemiologia , Theileria/genética , Theileria annulata/genética , Theileriose/parasitologia
16.
Parasit Vectors ; 16(1): 435, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007442

RESUMO

BACKGROUND: Theileria equi causes equine piroplasmosis, an economically significant disease that affects horses and other equids worldwide. Based on 18S ribosomal RNA (18S rRNA sequences), T. equi can be classified into five genotypes: A, B, C, D, and E. These genotypes have implications for disease management and control. However, no conventional polymerase chain reaction (PCR) assays are available to differentiate the genotypes of T. equi. To overcome this limitation, we developed and evaluated PCR assays specific for the detection of each T. equi genotype. METHODS: A pair of forward and reverse primers, specifically targeting the 18S rRNA sequence of each genotype, was designed. The genotype-specific PCR assays were evaluated for their specificity using plasmids containing inserts of the 18S rRNA sequence of each genotype. Subsequently, the assays were tested on 270 T. equi-positive equine blood DNA samples (92 from donkeys in Sri Lanka and 178 from horses in Paraguay). 18S rRNA sequences derived from the PCR amplicons were analyzed phylogenetically. RESULTS: Each genotype-specific PCR assay accurately targeted the intended genotype, and did not produce any amplicons when 18S rRNA from other T. equi genotypes or genomic DNA of Babesia caballi or uninfected horse blood was used as the template. Previous studies employing PCR sequencing methods identified T. equi genotypes C and D in the Sri Lankan samples, and genotypes A and C in the Paraguayan samples. In contrast, our PCR assay demonstrated exceptional sensitivity by detecting four genotypes (A, C, D, and E) in the Sri Lankan samples and all five genotypes in the Paraguayan samples. All the Sri Lankan samples and 93.3% of the Paraguayan samples tested positive for at least one genotype, further emphasizing the sensitivity of our assays. The PCR assays also had the ability to detect co-infections, where multiple genotypes in various combinations were detected in 90.2% and 22.5% of the Sri Lankan and Paraguayan samples, respectively. Furthermore, the sequences obtained from PCR amplicons clustered in the respective phylogenetic clades for each genotype, validating the specificity of our genotype-specific PCR assays. CONCLUSIONS: The genotype-specific PCR assays developed in the present study are reliable tools for the differential detection of T. equi genotypes.


Assuntos
Babesiose , Doenças dos Bovinos , Doenças dos Cavalos , Theileria , Theileriose , Bovinos , Cavalos , Animais , Theileria/genética , Theileriose/diagnóstico , Babesiose/diagnóstico , RNA Ribossômico 18S/genética , Filogenia , DNA de Protozoário/genética , Doenças dos Cavalos/diagnóstico , Reação em Cadeia da Polimerase , Equidae , Genótipo
17.
Antimicrob Agents Chemother ; 56(6): 3196-206, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22391527

RESUMO

The apicoplast housekeeping machinery, specifically apicoplast DNA replication, transcription, and translation, was targeted by ciprofloxacin, thiostrepton, and rifampin, respectively, in the in vitro cultures of four Babesia species. Furthermore, the in vivo effect of thiostrepton on the growth cycle of Babesia microti in BALB/c mice was evaluated. The drugs caused significant inhibition of growth from an initial parasitemia of 1% for Babesia bovis, with 50% inhibitory concentrations (IC(50)s) of 8.3, 11.5, 12, and 126.6 µM for ciprofloxacin, thiostrepton, rifampin, and clindamycin, respectively. The IC(50)s for the inhibition of Babesia bigemina growth were 15.8 µM for ciprofloxacin, 8.2 µM for thiostrepton, 8.3 µM for rifampin, and 206 µM for clindamycin. The IC(50)s for Babesia caballi were 2.7 µM for ciprofloxacin, 2.7 µM for thiostrepton, 4.7 µM for rifampin, and 4.7 µM for clindamycin. The IC(50)s for the inhibition of Babesia equi growth were 2.5 µM for ciprofloxacin, 6.4 µM for thiostrepton, 4.1 µM for rifampin, and 27.2 µM for clindamycin. Furthermore, an inhibitory effect was revealed for cultures with an initial parasitemia of either 10 or 7% for Babesia bovis or Babesia bigemina, respectively. The three inhibitors caused immediate death of Babesia bovis and Babesia equi. The inhibitory effects of ciprofloxacin, thiostrepton, and rifampin were confirmed by reverse transcription-PCR. Thiostrepton at a dose of 500 mg/kg of body weight resulted in 77.5% inhibition of Babesia microti growth in BALB/c mice. These results implicate the apicoplast as a potential chemotherapeutic target for babesiosis.


Assuntos
Antibacterianos/farmacologia , Babesia/efeitos dos fármacos , Animais , Babesia/genética , Babesiose , Western Blotting , Clindamicina/farmacologia , Feminino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rifampina/farmacologia , Tioestreptona/farmacologia
18.
J Clin Microbiol ; 50(6): 2111-3, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442312

RESUMO

We describe here the clinical significance of coinfection with Theileria orientalis and Babesia ovata in cattle. Anemia status in a herd of dairy cattle in Japan was investigated in relation to infection with these parasites. Our findings indicate that while B. ovata infection might not be the primary cause of anemia in the cattle, it may contribute to the clinical development of anemia in animals coinfected with both B. ovata and T. orientalis.


Assuntos
Babesia/isolamento & purificação , Babesiose/veterinária , Doenças dos Bovinos/diagnóstico , Técnicas de Laboratório Clínico/métodos , Reação em Cadeia da Polimerase/métodos , Theileria/isolamento & purificação , Theileriose/complicações , Anemia/epidemiologia , Anemia/etiologia , Anemia/veterinária , Animais , Babesia/genética , Babesiose/complicações , Babesiose/diagnóstico , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Coinfecção/complicações , Coinfecção/diagnóstico , Coinfecção/parasitologia , Coinfecção/veterinária , Japão , Técnicas de Diagnóstico Molecular/métodos , Parasitologia/métodos , Theileria/genética , Theileriose/diagnóstico , Theileriose/parasitologia , Medicina Veterinária/métodos
19.
Infect Genet Evol ; 99: 105244, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149223

RESUMO

Equine piroplasmosis (EP) is a tick-borne disease caused by Theileria equi and Babesia caballi in equids, including horses, donkeys, zebras, and mules. It is globally endemic with significant economic impact on the equine industry. Infected animals may serve as carriers, and they may be a source of infection for ticks, thereby posing a great challenge for disease management. Sri Lanka is a tropical country, where infections by various tick-borne parasites are common among livestock animals. However, infections by T. equi and B. caballi remain unstudied in Sri Lanka. Therefore, in the present study, we conducted an epidemiological survey to investigate the presence of T. equi and B. caballi in apparently healthy free-roaming donkeys. Blood samples were randomly taken from 111 donkeys in Mannar (n = 100) and Kilinochchi (n = 11) districts in Sri Lanka. Thin blood smears were prepared from the blood samples and subjected to microscopic examination. Additionally, blood DNA samples were prepared and screened for T. equi and B. caballi infections using species-specific PCR assays. Our results showed that 64 (57.7%) and 95 (85.6%) of the donkeys were positive for T. equi by microscopy and PCR, respectively. However, all samples were negative for B. caballi. Phylogenetic analysis of the T. equi 18S rRNA sequences detected two distinct genotypes, namely C and D. To our knowledge, this is the first report of T. equi in Sri Lanka and of genotype C in donkeys. The present study highlights the importance of monitoring the shrinking donkey population in Sri Lanka owing to EP caused by T. equi.


Assuntos
Babesiose , Doenças dos Cavalos , Theileria , Theileriose , Carrapatos , Animais , Babesiose/epidemiologia , Babesiose/parasitologia , Bovinos , Equidae/parasitologia , Doenças dos Cavalos/epidemiologia , Cavalos , Filogenia , Sri Lanka/epidemiologia , Theileria/genética , Theileriose/epidemiologia , Theileriose/parasitologia , Carrapatos/parasitologia
20.
Parasit Vectors ; 15(1): 299, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002908

RESUMO

BACKGROUND: The recently discovered Babesia sp. Mymensingh, which causes clinical bovine babesiosis, has a wide geographical distribution. We investigated the phylogenetic position of Babesia sp. Mymensingh using its mitochondrial, plastid, and nuclear genes. Based on morphological and molecular data, Babesia sp. Mymensingh is a unique species and we named it as Babesia naoakii n. sp. METHODS: A blood DNA sample from a Babesia sp. Mymensingh-infected cow was subjected to genome sequencing to obtain the sequences of mitochondrial, plastid, and nuclear genes. Six phylogenetic trees were then constructed with (1) concatenated amino acid sequences of cytochrome oxidase subunit I, cytochrome oxidase subunit III, and cytochrome b genes of the mitochondrial genome; (2) 16S rRNA of the plastid genome; (3) nucleotide sequences of the elongation factor Tu gene of the plastid genome; (4) ITS1-5.8S rRNA-ITS2; (5) concatenated nucleotide sequences of 89 nuclear genes; and (6) concatenated amino acid sequences translated from the 89 nuclear genes. RESULTS: In all six phylogenetic trees, B. naoakii n. sp. formed a sister clade to the common ancestor of Babesia bigemina and B. ovata. The concatenated nuclear genes of B. naoakii n. sp. and their translated amino acid sequences shared lower identity scores with the sequences from B. bigemina (82.7% and 84.7%, respectively) and B. ovata (83.5% and 85.5%, respectively) compared with the identity scores shared between the B. bigemina and B. ovata sequences (86.3% and 87.9%, respectively). CONCLUSIONS: Our study showed that B. naoakii n. sp. occupies a unique phylogenetic position distinct from existing Babesia species. Our findings, together with morphological differences, identify B. naoakii n. sp. as a distinct parasite species.


Assuntos
Babesia , Babesiose , Doenças dos Bovinos , Animais , Babesia/genética , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Feminino , Filogenia , Plastídeos , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA