Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687976

RESUMO

(1) Background: in the field of motor-imagery brain-computer interfaces (MI-BCIs), obtaining discriminative features among multiple MI tasks poses a significant challenge. Typically, features are extracted from single electroencephalography (EEG) channels, neglecting their interconnections, which leads to limited results. To address this limitation, there has been growing interest in leveraging functional brain connectivity (FC) as a feature in MI-BCIs. However, the high inter- and intra-subject variability has so far limited its effectiveness in this domain. (2) Methods: we propose a novel signal processing framework that addresses this challenge. We extracted translation-invariant features (TIFs) obtained from a scattering convolution network (SCN) and brain connectivity features (BCFs). Through a feature fusion approach, we combined features extracted from selected channels and functional connectivity features, capitalizing on the strength of each component. Moreover, we employed a multiclass support vector machine (SVM) model to classify the extracted features. (3) Results: using a public dataset (IIa of the BCI Competition IV), we demonstrated that the feature fusion approach outperformed existing state-of-the-art methods. Notably, we found that the best results were achieved by merging TIFs with BCFs, rather than considering TIFs alone. (4) Conclusions: our proposed framework could be the key for improving the performance of a multiclass MI-BCI system.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia , Imagens, Psicoterapia , Processamento de Sinais Assistido por Computador
2.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960532

RESUMO

(1) Background: Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) provides a unique opportunity to investigate brain connectivity. However, possible hemispheric asymmetries in signal propagation dynamics following occipital TMS have not been investigated. (2) Methods: Eighteen healthy participants underwent occipital single-pulse TMS at two different EEG sites, corresponding to early visual areas. We used a state-of-the-art Bayesian estimation approach to accurately estimate TMS-evoked potentials (TEPs) from EEG data, which has not been previously used in this context. To capture the rapid dynamics of information flow patterns, we implemented a self-tuning optimized Kalman (STOK) filter in conjunction with the information partial directed coherence (iPDC) measure, enabling us to derive time-varying connectivity matrices. Subsequently, graph analysis was conducted to assess key network properties, providing insight into the overall network organization of the brain network. (3) Results: Our findings revealed distinct lateralized effects on effective brain connectivity and graph networks after TMS stimulation, with left stimulation facilitating enhanced communication between contralateral frontal regions and right stimulation promoting increased intra-hemispheric ipsilateral connectivity, as evidenced by statistical test (p < 0.001). (4) Conclusions: The identified hemispheric differences in terms of connectivity provide novel insights into brain networks involved in visual information processing, revealing the hemispheric specificity of neural responses to occipital stimulation.


Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Teorema de Bayes , Potenciais Evocados/fisiologia , Estimulação Magnética Transcraniana , Encéfalo/fisiologia
3.
Front Bioeng Biotechnol ; 11: 1280233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076424

RESUMO

Introduction: The retrospective analysis of continuous glucose monitoring (CGM) timeseries can be hampered by colored and non-stationary measurement noise. Here, we introduce a Bayesian denoising (BD) algorithm to address both autocorrelation of measurement noise and temporal variability of its variance. Methods: BD utilizes adaptive, a-priori models of signal and noise, whose unknown variances are derived on partially-overlapped CGM windows, via smoothing approach based on linear mean square estimation. The CGM signal and noise variability profiles are then reconstructed using a kernel smoother. BD is first assessed on two simulated datasets, DS1 and DS2. On DS1, the effectiveness of accounting for colored noise is evaluated by comparison against a literature algorithm; on DS2, the effectiveness of accounting for the noise variance temporal variability is evaluated by comparison against a Butterworth filter. BD is then evaluated on 15 CGM timeseries measured by the Dexcom G6 (DR). Results: On DS1, BD allows reducing the root-mean-square-error (RMSE) from 8.10 [6.79-9.24] mg/dL to 6.28 [5.47-7.27] mg/dL (median [IQR]); on DS2, RMSE decreases from 6.85 [5.50-8.72] mg/dL to 5.35 [4.48-6.49] mg/dL. On DR, BD performs a reasonable tracking of noise variance variability and a satisfactory denoising. Discussion: The new algorithm effectively addresses the nature of CGM measurement error, outperforming existing denoising algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA