Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 322(4): E344-E354, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156423

RESUMO

The gut microbiome has the capacity to regulate bone mass. The aim of this study was to develop a nutritional synbiotic dietary assemblage at an optimal dose to maintain bone mass in ovariectomized (Ovx) mice. We performed genomic analyses and in vitro experiments in a large collection of bacterial and fungal strains (>4,000) derived from fresh fruit and vegetables to identify candidates with the synergistic capacity to produce bone-protective short-chain fatty acids (SCFA) and vitamin K2. The candidate SBD111-A, composed of Lactiplantibacillus plantarum, Levilactobacillus brevis, Leuconostoc mesenteroides, Pseudomonas fluorescens, and Pichia kudriavzevii together with prebiotic dietary fibers, produced high levels of SCFA in vitro and protected against Ovx-induced trabecular bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and enriched specific pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids in the gut microbiome.NEW & NOTEWORTHY We performed genomic analyses and in vitro experiments in a collection of bacterial and fungal strains. We identified a combination (SBD111-A) that produced high levels of SCFA in vitro and protected against ovariectomy-induced bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and function of the gut microbiome and enriched pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids.


Assuntos
Osso Esponjoso , Simbióticos , Aminoácidos de Cadeia Ramificada , Animais , Bactérias , Ácidos Graxos Voláteis , Feminino , Humanos , Camundongos , Ovariectomia , Vitamina K 2
2.
Am J Physiol Endocrinol Metab ; 320(3): E591-E597, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522399

RESUMO

Studies in humans and rodents show that probiotic bacteria can protect from bone loss caused by sex steroid deficiency. We showed earlier that a mixture of three probiotic bacteria, Lacticaseibacillus paracasei DSM13434, Lactiplantibacillus plantarum DSM 15312, and DSM 15313 (L. mix), protects mice from ovariectomy (ovx)-induced bone loss when treatment was started 2 wk before sham and ovx surgery. In addition, the same probiotic treatment protected against lumbar spine bone loss in early postmenopausal women. In the present study, we wanted to evaluate the therapeutic potential of L. mix by starting treatment 1.5 wk after ovx when most of the rapid bone loss as a result of estrogen deficiency has already occurred. Treatment with L. mix for 5.5 wk increased the trabecular thickness but not the trabecular number in the proximal metaphyseal region of tibia compared with vehicle treatment. Cortical thickness and cortical area of the middiaphyseal part of the tibia were significantly decreased in ovx mice but not in L. mix-treated ovx mice. The bone-protective effects of L. mix in ovx mice were associated with a protection against ovx-induced reduction of the frequency of regulatory T-cells and of the expression of Tgfß in the bone marrow. In conclusion, the probiotic L. mix exerted a mild stimulatory effect on trabecular and cortical bone width when treatment is initiated 1.5 wk after ovariectomy in mice. This effect was associated with effects on bone-protecting regulatory T-cells. The results suggest that L. mix may exert beneficial effects on bone mass when treatment is started after ovariectomy.NEW & NOTEWORTHY The probiotic L. mix exerted a mild stimulatory effect on trabecular and cortical bone width when treatment is initiated 1.5 wk after ovariectomy in mice. This effect was associated with effects on bone-protecting regulatory T-cells. The results suggest that L. mix may exert beneficial effects on bone mass when treatment is started after ovariectomy.


Assuntos
Densidade Óssea/efeitos dos fármacos , Ovariectomia , Probióticos/administração & dosagem , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Esquema de Medicação , Feminino , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Ovariectomia/efeitos adversos , Probióticos/farmacologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Fatores de Tempo
3.
FASEB J ; 34(12): 15991-16002, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067917

RESUMO

Estrogen treatment increases bone mass and reduces fat mass but is associated with adverse effects in postmenopausal women. Knowledge regarding tissue-specific estrogen signaling is important to aid the development of new tissue-specific treatments. We hypothesized that the posttranslational modification phosphorylation in estrogen receptor alpha (ERα) may modulate ERα activity in a tissue-dependent manner. Phosphorylation of site S122 in ERα has been shown in vitro to affect ERα activity, but the tissue-specific role in vivo is unknown. We herein developed and phenotyped a novel mouse model with a point mutation at the phosphorylation site 122 in ERα (S122A). Female S122A mice had increased fat mass and serum insulin levels but unchanged serum sex steroid levels, uterus weight, bone mass, thymus weight, and lymphocyte maturation compared to WT mice. In conclusion, phosphorylation site S122 in ERα has a tissue-dependent role with an impact specifically on fat mass in female mice. This study is the first to demonstrate in vivo that a phosphorylation site in a transactivation domain in a nuclear steroid receptor modulates the receptor activity in a tissue-dependent manner.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fosforilação/genética , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/genética , Mutação Puntual/genética , Transdução de Sinais/genética
4.
Proc Natl Acad Sci U S A ; 115(2): 427-432, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279372

RESUMO

Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat ("gravitostat") that regulates fat mass.


Assuntos
Tecido Adiposo/metabolismo , Peso Corporal/fisiologia , Homeostase/efeitos dos fármacos , Leptina/farmacologia , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/fisiologia , Leptina/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Osteócitos/metabolismo , Ratos Sprague-Dawley , Redução de Peso/efeitos dos fármacos , Redução de Peso/fisiologia
5.
Am J Physiol Endocrinol Metab ; 318(5): E646-E654, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125882

RESUMO

Mouse models with lifelong inactivation of estrogen receptor-α (ERα) show that ERα is the main mediator of estrogenic effects in bone, thymus, uterus, and fat. However, ERα inactivation early in life may cause developmental effects that confound the adult phenotypes. To address the specific role of adult ERα expression for estrogenic effects in bone and other nonskeletal tissues, we established a tamoxifen-inducible ERα-inactivated model by crossing CAGG-Cre-ER and ERαflox/flox mice. Tamoxifen-induced ERα inactivation after sexual maturation substantially reduced ERα mRNA levels in cortical bone, trabecular bone, thymus, uterus, gonadal fat, and hypothalamus, in CAGG-Cre-ERαflox/flox (inducible ERαKO) compared with ERαflox/flox (control) mice. 17ß-estradiol (E2) treatment increased trabecular bone volume fraction (BV/TV), cortical bone area, and uterine weight, while it reduced thymus weight and fat mass in ovariectomized control mice. The estrogenic responses were substantially reduced in inducible ERαKO mice compared with control mice on BV/TV (-67%), uterine weight (-94%), thymus weight (-70%), and gonadal fat mass (-94%). In contrast, the estrogenic response on cortical bone area was unaffected in inducible ERαKO compared with control mice. In conclusion, using an inducible ERαKO model, not confounded by lack of ERα during development, we demonstrate that ERα expression in sexually mature female mice is required for normal E2 responses in most, but not all, tissues. The finding that cortical, but not trabecular bone, responds normally to E2 treatment in inducible ERαKO mice strengthens the idea of cortical and trabecular bone being regulated by estrogen via different mechanisms.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Útero/efeitos dos fármacos , Animais , Osso e Ossos/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Timo/efeitos dos fármacos , Timo/metabolismo , Útero/metabolismo
6.
Am J Physiol Endocrinol Metab ; 318(4): E480-E491, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961709

RESUMO

Probiotic bacteria can protect from ovariectomy (ovx)-induced bone loss in mice. Akkermansia muciniphila is considered to have probiotic potential due to its beneficial effect on obesity and insulin resistance. The purpose of the present study was to determine if treatment with pasteurized Akkermansia muciniphila (pAkk) could prevent ovx-induced bone loss. Mice were treated with vehicle or pAkk for 4 wk, starting 3 days before ovx or sham surgery. Treatment with pAkk reduced fat mass accumulation confirming earlier findings. However, treatment with pAkk decreased trabecular and cortical bone mass in femur and vertebra of gonadal intact mice and did not protect from ovx-induced bone loss. Treatment with pAkk increased serum parathyroid hormone (PTH) levels and increased expression of the calcium transporter Trpv5 in kidney suggesting increased reabsorption of calcium in the kidneys. Serum amyloid A 3 (SAA3) can suppress bone formation and mediate the effects of PTH on bone resorption and bone loss in mice and treatment with pAkk increased serum levels of SAA3 and gene expression of Saa3 in colon. Moreover, regulatory T cells can be protective of bone and pAkk-treated mice had decreased number of regulatory T cells in mesenteric lymph nodes and bone marrow. In conclusion, treatment with pAkk protected from ovx-induced fat mass gain but not from bone loss and reduced bone mass in gonadal intact mice. Our findings with pAkk differ from some probiotics that have been shown to protect bone mass, demonstrating that not all prebiotic and probiotic factors have the same effect on bone.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Microbioma Gastrointestinal/fisiologia , Osteoporose/metabolismo , Probióticos/farmacologia , Verrucomicrobia/metabolismo , Tecido Adiposo/metabolismo , Akkermansia , Animais , Canais de Cálcio/metabolismo , Colo/efeitos dos fármacos , Colo/microbiologia , Feminino , Fêmur/efeitos dos fármacos , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Hormônio Paratireóideo/metabolismo , Pasteurização , Proteína Amiloide A Sérica/metabolismo , Coluna Vertebral/efeitos dos fármacos , Linfócitos T Reguladores , Canais de Cátion TRPV/metabolismo
7.
Am J Physiol Endocrinol Metab ; 317(6): E1182-E1192, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689143

RESUMO

Androgens exert important effects both in androgen-responsive tissues and in the intestinal tract. To determine the impact of the gut microbiota (GM) on intestinal androgen metabolism, we measured unconjugated (free) and glucuronidated androgen levels in intestinal contents from the small intestine, with a low bacterial density, and from cecum and colon, with a high bacterial density. Using a specific, sensitive gas chromatography-tandem mass spectrometry method, we detected high levels of glucuronidated testosterone (T) and dihydrotestosterone (DHT) in small intestinal content of mice of both sexes, whereas in the distal intestine we observed remarkably high levels of free DHT, exceeding serum levels by >20-fold. Similarly, in young adult men high levels of unconjugated DHT, >70-fold higher than in serum, were detected in feces. In contrast to mice with a normal GM composition, germ-free mice had high levels of glucuronidated T and DHT, but very low free DHT levels, in the distal intestine. These findings demonstrate that the GM is involved in intestinal metabolism and deglucuronidation of DHT and T, resulting in extremely high free levels of the most potent androgen, DHT, in the colonic content of young and healthy mice and men.


Assuntos
Androgênios/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Animais , Ceco/metabolismo , Ceco/microbiologia , Colo/metabolismo , Colo/microbiologia , Di-Hidrotestosterona/análogos & derivados , Di-Hidrotestosterona/metabolismo , Fezes/química , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Vida Livre de Germes , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Camundongos , Testosterona/análogos & derivados , Testosterona/metabolismo , Adulto Jovem
8.
Calcif Tissue Int ; 102(4): 426-432, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29079994

RESUMO

The mutualistic interaction between the gut microbiota (GM) and its host profoundly shapes many aspects of our physiology. The composition and activity of the gut microbiota is modulated by environmental factors such as dietary habits and antibiotic treatments. In rodents, studies demonstrate that the GM is a crucial regulator of bone metabolism and that modulation of the GM composition by probiotic interventions can prevent castration-induced bone loss. Short-term colonization of germ-free mice with GM results in an activation of CD4+T cells, resulting in increased levels of pro-inflammatory cytokines in bone and thereby activation of osteoclastic bone resorption. Besides these immune-mediated effects on bone mass, the GM is involved in nutritional uptake and may, thereby, regulate overall body growth and bone sizes possibly mediated via altered IGF-I levels. We recently introduced a new term "osteomicrobiology" for the rapidly emerging research field of the role of the microbiota in bone health. This research field is aimed to bridge the gaps between bone physiology, gastroenterology, immunology, and microbiology. Future studies will determine if the GM is a novel therapeutic target for osteoporosis and if the GM composition might be used as a biomarker for fracture prediction.


Assuntos
Reabsorção Óssea/microbiologia , Osso e Ossos/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/microbiologia , Osteoporose/microbiologia , Animais , Densidade Óssea/fisiologia , Humanos
9.
Proc Natl Acad Sci U S A ; 112(48): 14972-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627248

RESUMO

Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16(-/-) mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females is WNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl-Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl-Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16(-/-) mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16(-/-) and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16-targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.


Assuntos
Densidade Óssea/fisiologia , Osteoblastos/metabolismo , Coluna Vertebral/metabolismo , Proteínas Wnt/biossíntese , Animais , Estrogênios , Feminino , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Proteínas Wnt/genética
10.
Am J Physiol Endocrinol Metab ; 313(4): E450-E462, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655716

RESUMO

Females are, in general, more insulin sensitive than males. To investigate whether this is a direct effect of sex-steroids (SS) in white adipose tissue (WAT), we developed a male mouse model overexpressing the aromatase enzyme, converting testosterone (T) to estradiol (E2), specifically in WAT (Ap2-arom mice). Adipose tissue E2 levels were increased while circulating SS levels were unaffected in male Ap2-arom mice. Importantly, male Ap2-arom mice were more insulin sensitive compared with WT mice and exhibited increased serum adiponectin levels and upregulated expression of Glut4 and Irs1 in WAT. The expression of markers of macrophages and immune cell infiltration was markedly decreased in WAT of male Ap2-arom mice. The adipogenesis was enhanced in male Ap2-arom mice, supported by elevated Pparg expression in WAT and enhanced differentiation of preadipocyte into mature adipocytes. In summary, increased adipose tissue aromatase activity reduces adipose tissue inflammation and improves insulin sensitivity in male mice. We propose that estrogen increases insulin sensitivity via a local effect in WAT on adiponectin expression, adipose tissue inflammation, and adipogenesis.


Assuntos
Tecido Adiposo Branco/metabolismo , Aromatase/genética , Estradiol/metabolismo , Resistência à Insulina/genética , Testosterona/metabolismo , Adipócitos , Adipogenia/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/imunologia , Animais , Técnicas de Introdução de Genes , Transportador de Glucose Tipo 4/metabolismo , Inflamação , Proteínas Substratos do Receptor de Insulina/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , PPAR gama/metabolismo , Regulação para Cima
11.
Cell Immunol ; 317: 55-58, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28576260

RESUMO

Germ-free (GF) mice have increased bone mass that is normalized by colonization with gut microbiota (GM) from conventionally raised (CONV-R) mice. To determine if innate immune signaling pathways mediated the effect of the GM, we studied the skeleton of GF and CONV-R mice with targeted inactivation of MYD88, NOD1 or NOD2. In contrast to WT and Myd88-/- mice, cortical bone thickness in mice lacking Nod1 or Nod2 was not increased under GF conditions. The expression of Tnfα and the osteoclastogenic factor Rankl in bone was reduced in GF compared to CONV-R WT mice but not in Nod1-/- or Nod2-/- mice indicating that the effect of the GM to increase Tnfα and Rankl in bone and to reduce bone mass is dependent on both NOD1 and NOD2 signaling.


Assuntos
Osso e Ossos/imunologia , Microbioma Gastrointestinal/imunologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Transdução de Sinais , Animais , Desenvolvimento Ósseo/imunologia , Células Cultivadas , Feminino , Vida Livre de Germes , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética
12.
Proc Natl Acad Sci U S A ; 111(3): 1180-5, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395795

RESUMO

The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.


Assuntos
Estradiol/análogos & derivados , Receptor alfa de Estrogênio/química , Receptores de Estrogênio/antagonistas & inibidores , Tecido Adiposo/metabolismo , Animais , Células da Medula Óssea/citologia , Osso e Ossos/metabolismo , Estradiol/química , Antagonistas de Estrogênios/química , Feminino , Fulvestranto , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Camundongos , Mutação , Tamanho do Órgão , Estrutura Terciária de Proteína , Pirrolidinas/química , Cloridrato de Raloxifeno/química , Tetra-Hidronaftalenos/química , Timo/efeitos dos fármacos , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Útero/efeitos dos fármacos , Microtomografia por Raio-X
13.
Am J Physiol Endocrinol Metab ; 311(1): E138-44, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27221117

RESUMO

Low circulating IGF-I is associated with increased fracture risk. Conditional depletion of IGF-I produced in osteoblasts or osteocytes inhibits the bone anabolic effect of mechanical loading. Here, we determined the role of endocrine IGF-I for the osteogenic response to mechanical loading in young adult and old female mice with adult, liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice, serum IGF-I reduced by ≈70%) and control mice. The right tibia was subjected to short periods of axial cyclic compressive loading three times/wk for 2 wk, and measurements were performed using microcomputed tomography and mechanical testing by three-point bending. In the nonloaded left tibia, the LI-IGF-I(-/-) mice had lower cortical bone area and increased cortical porosity, resulting in reduced bone mechanical strength compared with the controls. Mechanical loading induced a similar response in LI-IGF-I(-/-) and control mice in terms of cortical bone area and trabecular bone volume fraction. In fact, mechanical loading produced a more marked increase in cortical bone mechanical strength, which was associated with a less marked increase in cortical porosity, in the LI-IGF-I(-/-) mice compared with the control mice. In conclusion, liver-derived IGF-I regulates cortical bone mass, cortical porosity, and mechanical strength under normal (nonloaded) conditions. However, despite an ∼70% reduction in circulating IGF-I, the osteogenic response to mechanical loading was not attenuated in the LI-IGF-I(-/-) mice.


Assuntos
Adaptação Fisiológica/genética , Osso Cortical/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fígado/metabolismo , Osteogênese/genética , Tíbia/metabolismo , Suporte de Carga , Animais , Densidade Óssea/genética , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Osso Esponjoso/fisiologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/fisiologia , Feminino , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Porosidade , Estresse Mecânico , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X
14.
Am J Physiol Endocrinol Metab ; 310(11): E912-8, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27048997

RESUMO

The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-1(0)) with E2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.


Assuntos
Densidade Óssea/fisiologia , Moduladores de Receptor Estrogênico/administração & dosagem , Receptor alfa de Estrogênio/metabolismo , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Ovariectomia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
Proc Natl Acad Sci U S A ; 110(6): 2294-9, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345419

RESUMO

The bone-sparing effect of estrogen in both males and females is primarily mediated via estrogen receptor-α (ERα), encoded by the Esr1 gene. ERα in osteoclasts is crucial for the trabecular bone-sparing effect of estrogen in females, but it is dispensable for trabecular bone in male mice and for cortical bone in both genders. We hypothesized that ERα in osteocytes is important for trabecular bone in male mice and for cortical bone in both males and females. Dmp1-Cre mice were crossed with ERα(flox/flox) mice to generate mice lacking ERα protein expression specifically in osteocytes (Dmp1-ERα(-/-)). Male Dmp1-ERα(-/-) mice displayed a substantial reduction in trabecular bone volume (-20%, P < 0.01) compared with controls. Dynamic histomorphometry revealed reduced bone formation rate (-45%, P < 0.01) but the number of osteoclasts per bone surface was unaffected in the male Dmp1-ERα(-/-) mice. The male Dmp1-ERα(-/-) mice had reduced expression of several osteoblast/osteocyte markers in bone, including Runx2, Sp7, and Dmp1 (P < 0.05). Gonadal intact Dmp1-ERα(-/-) female mice had no significant reduction in trabecular bone volume but ovariectomized Dmp1-ERα(-/-) female mice displayed an attenuated trabecular bone response to supraphysiological E2 treatment. Dmp1-ERα(-/-) mice of both genders had unaffected cortical bone. In conclusion, ERα in osteocytes regulates trabecular bone formation and thereby trabecular bone volume in male mice but it is dispensable for the trabecular bone in female mice and the cortical bone in both genders. We propose that the physiological trabecular bone-sparing effect of estrogen is mediated via ERα in osteocytes in males, but via ERα in osteoclasts in females.


Assuntos
Desenvolvimento Ósseo/fisiologia , Receptor alfa de Estrogênio/fisiologia , Osteócitos/fisiologia , Animais , Desenvolvimento Ósseo/genética , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Contagem de Células , Estradiol/farmacologia , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteoclastos/citologia , Osteoclastos/fisiologia , Osteócitos/citologia , Osteogênese/genética , Osteogênese/fisiologia , Ovariectomia , Ovário/fisiologia , Caracteres Sexuais , Estresse Mecânico
16.
FASEB J ; 27(4): 1342-50, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23239821

RESUMO

The human CYP19A1 gene is expressed in various tissues by the use of tissue-specific promoters, whereas the rodent cyp19a1 gene is expressed mainly in the gonads and brain. We generated a transgenic mouse model containing a >100-kb 5' region of human CYP19A1 gene connected to a luciferase reporter gene. The luciferase activity in mouse tissues mimicked the CYP19A1 gene expression pattern in humans. Interestingly, the reporter gene activity was 16 and 160 times higher in the urinary bladder and seminal vesicles, respectively, as compared with the activity in the testis. Accordingly, CYP19A1 gene and P450arom protein expression was detected in those human tissues. Moreover, the data revealed that the expression of CYP19A1 gene is driven by promoters PII, I.4, and I.3 in the seminal vesicles, and by promoters PII and I.4 in the urinary bladder. Furthermore, the reporter gene expression in the seminal vesicles was androgen dependent: Castration decreased the expression ∼20 times, and testosterone treatment restored it to the level of an intact mouse. This reporter mouse model facilitates studies of tissue-specific regulation of the human CYP19A1 gene, and our data provide evidence for seminal vesicles as important sites for estrogen production in males.


Assuntos
Androgênios/metabolismo , Aromatase/metabolismo , Glândulas Seminais/metabolismo , Bexiga Urinária/metabolismo , Androgênios/genética , Animais , Aromatase/genética , Regulação Enzimológica da Expressão Gênica/genética , Genes Reporter/genética , Humanos , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Testículo/metabolismo
17.
Sci Rep ; 14(1): 12967, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839844

RESUMO

Osteoporosis is a common skeletal disease affecting millions of individuals world-wide, with an increased risk of fracture, and a decreased quality of life. Despite its well-known consequences, the etiology of osteoporosis and optimal treatment methods are not fully understood. Human genetic studies have identified genetic variants within the FMN2/GREM2 locus to be associated with trabecular volumetric bone mineral density (vBMD) and vertebral and forearm fractures, but not with cortical bone parameters. GREM2 is a bone morphogenetic protein (BMP) antagonist. In this study, we employed Grem2-deficient mice to investigate whether GREM2 serves as the plausible causal gene for the fracture signal at the FMN2/GREM2 locus. We observed that Grem2 is moderately expressed in bone tissue and particularly in osteoblasts. Complete Grem2 gene deletion impacted mouse survival and body growth. Partial Grem2 inactivation in Grem2+/- female mice led to increased trabecular BMD of femur and increased trabecular bone mass in tibia due to increased trabecular thickness, with an unchanged cortical thickness, as compared with wildtype littermates. Furthermore, Grem2 inactivation stimulated osteoblast differentiation, as evidenced by higher alkaline phosphatase (Alp), osteocalcin (Bglap), and osterix (Sp7) mRNA expression after BMP-2 stimulation in calvarial osteoblasts and osteoblasts from the long bones of Grem2-/- mice compared to wildtype littermates. These findings suggest that GREM2 is a possible target for novel osteoporotic treatments, to increase trabecular bone mass and prevent osteoporotic fractures.


Assuntos
Densidade Óssea , Osso Esponjoso , Osteoblastos , Animais , Feminino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Osso Esponjoso/metabolismo , Osso Esponjoso/patologia , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/patologia , Osteoporose/metabolismo
18.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37406213

RESUMO

Insulin-like growth factor-I (IGF-I) levels, which are reduced by age, and cortical bone dimensions are major determinants of fracture risk in elderly subjects. Inactivation of liver-derived circulating IGF-I results in reduced periosteal bone expansion in young and older mice. In mice with lifelong depletion of IGF-I in osteoblast lineage cells, the long bones display reduced cortical bone width. However, it has not previously been investigated whether inducible inactivation of IGF-I locally in bone in adult/old mice affects the bone phenotype. Adult tamoxifen-inducible inactivation of IGF-I using a CAGG-CreER mouse model (inducible IGF-IKO mice) substantially reduced IGF-I expression in bone (-55%) but not in liver. Serum IGF-I and body weight were unchanged. We used this inducible mouse model to assess the effect of local IGF-I on the skeleton in adult male mice, avoiding confounding developmental effects. After tamoxifen-induced inactivation of the IGF-I gene at 9 months of age, the skeletal phenotype was determined at 14 months of age. Computed tomography analyses of tibia revealed that the mid-diaphyseal cortical periosteal and endosteal circumferences and calculated bone strength parameters were decreased in inducible IGF-IKO mice compared with controls. Furthermore, 3-point bending showed reduced tibia cortical bone stiffness in inducible IGF-IKO mice. In contrast, the tibia and vertebral trabecular bone volume fraction was unchanged. In conclusion, inactivation of IGF-I in cortical bone with unchanged liver-derived IGF-I in older male mice resulted in reduced radial growth of cortical bone. This suggests that not only circulating IGF-I but also locally derived IGF-I regulates the cortical bone phenotype in older mice.


Assuntos
Osso e Ossos , Fator de Crescimento Insulin-Like I , Humanos , Camundongos , Masculino , Animais , Idoso , Lactente , Fator de Crescimento Insulin-Like I/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Desenvolvimento Ósseo/genética , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Modelos Animais de Doenças , Tamoxifeno/farmacologia , Densidade Óssea/genética
19.
Gut Microbes ; 15(1): 2236755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475479

RESUMO

Aging is associated with low bone and lean mass as well as alterations in the gut microbiota (GM). In this study, we determined whether the reduced bone mass and relative lean mass observed in old mice could be transferred to healthy young mice by GM transplantation (GMT). GM from old (21-month-old) and young adult (5-month-old) donors was used to colonize germ-free (GF) mice in three separate studies involving still growing 5- or 11-week-old recipients and 17-week-old recipients with minimal bone growth. The GM of the recipient mice was similar to that of the donors, demonstrating successful GMT. GM from old mice did not have statistically significant effects on bone mass or bone strength, but significantly reduced the lean mass percentage of still growing recipient mice when compared with recipients of GM from young adult mice. The levels of propionate in the cecum of mice receiving old donor GM were significantly lower than those in mice receiving young adult donor GM. Bacteroides ovatus was enriched in the microbiota of recipient mice harboring GM from young adult donors. The presence of B. ovatus was not only significantly associated with high lean mass percentage in mice, but also with lean mass adjusted for fat mass in the large human HUNT cohort. In conclusion, GM from old mice reduces lean mass percentage but not bone mass in young, healthy, still growing recipient mice. Future studies are warranted to determine whether GM from young mice improves the musculoskeletal phenotype of frail elderly recipient mice.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto Jovem , Humanos , Camundongos , Animais , Idoso , Lactente , Transplante de Microbiota Fecal , Envelhecimento , Ceco
20.
Nat Commun ; 14(1): 2250, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080991

RESUMO

Appendicular lean mass (ALM) associates with mobility and bone mineral density (BMD). While associations between gut microbiota composition and ALM have been reported, previous studies rely on relatively small sample sizes. Here, we determine the associations between prevalent gut microbes and ALM in large discovery and replication cohorts with information on relevant confounders within the population-based Norwegian HUNT cohort (n = 5196, including women and men). We show that the presence of three bacterial species - Coprococcus comes, Dorea longicatena, and Eubacterium ventriosum - are reproducibly associated with higher ALM. When combined into an anabolic species count, participants with all three anabolic species have 0.80 kg higher ALM than those without any. In an exploratory analysis, the anabolic species count is positively associated with femoral neck and total hip BMD. We conclude that the anabolic species count may be used as a marker of ALM and BMD. The therapeutic potential of these anabolic species to prevent sarcopenia and osteoporosis needs to be determined.


Assuntos
Osteoporose , Sarcopenia , Masculino , Humanos , Feminino , Absorciometria de Fóton , Composição Corporal , Densidade Óssea , Osteoporose/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA