Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Phycol ; 60(5): 1256-1272, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39283301

RESUMO

Mallomonas thrive primarily in freshwaters and dominate plankton communities, especially in oligotrophic waters. The cells have a siliceous cell covering of regularly arranged scales. Despite their ecological importance, the intricate structure and evolutionary significance of their silica scales are still unexplored. We investigated the nanopatterns on the scales and hypothesized that they may play a role in UV shielding. UVA and UVB exposure experiments were performed with 20 Mallomonas species, categorized into four groups based on the nanopattern of the scales (plain-scaled, meshed, striated, and papilliferous group); a fifth group consisted of the species that have extremely thick, robust scales regardless of the nanopattern. We revealed that thick scales were associated with enhanced UVB resistance, suggesting a protective role. No significant differences in UVA response were observed among the groups, except for the meshed group, which showed lower resistance, likely due to the less regular pattern on the shield. In conclusion, the scale case, composed of sufficiently silicified scales, provides effective UV protection in freshwater environments, regardless of the particular nanopattern. In increased UVB radiation, the thickness of the scales plays role. Contrary to expectations, cell size and phylogeny do not strongly predict UV resistance. The study highlights the diverse UV responses of Mallomonas, but further studies are needed to understand the role of scales/nanopatterns in the ecological adaptations of the species.


Assuntos
Dióxido de Silício , Raios Ultravioleta , Chrysophyta/fisiologia
2.
Proc Natl Acad Sci U S A ; 117(5): 2551-2559, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31911467

RESUMO

The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.


Assuntos
Clorófitas/crescimento & desenvolvimento , Evolução Molecular , Alga Marinha/crescimento & desenvolvimento , Clorófitas/classificação , Ecossistema , Filogenia , Alga Marinha/classificação
3.
Mol Phylogenet Evol ; 177: 107607, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35963589

RESUMO

Eustigmatophyceae is one of the ∼17 classes of the vast algal phylum Ochrophyta. Over the last decade, the eustigmatophytes emerged as an expansive group that has grown from the initially recognized handful of species to well over 200 genetically distinct entities (potential species). Yet the majority of eustigs, remain represented by unidentified strains, or even only metabarcode sequences obtained from environmental samples. Moreover, the formal classification of the group has not yet been harmonized with the recently uncovered diversity and phylogenetic relationships within the class. Here we make a major step towards resolving this issue by addressing the diversity, phylogeny and classification of one of the most prominent eustigmatophyte clades previously informally called the "Eustigmataceae group". We obtained 18S rDNA and rbcL gene sequences from four new strains from the "Eustigmataceae group", and from several additional eustig strains, and performed the most comprehensive phylogenetic analyses of Eustigmatophyceae to date. Our results of these analyses confirm the monophyly of the "Eustigmataceae group" and define its major subclades. We also sequenced plastid genomes of five "Eustigmataceae group" strains to not only improve our understanding of the plastid gene content evolution in eustigs, but also to obtain a robustly resolved eustigmatophyte phylogeny. With this new genomic data, we have solidified the view of the "Eustigmataceae group" as a well-defined family level clade. Crucially, we also have firmly established the genus Chlorobotrys as a member of the "Eustigmataceae group". This new molecular evidence, together with a critical analysis of the literature going back to the 19th century, provided the basis to radically redefine the historical concept of the family Chlorobotryaceae as the formal taxonomic rubric corresponding to the "Eustigmataceae group". With this change, the family names Eustigmataceae and Characiopsidaceae are reduced to synonymy with the Chlorobotryaceae, with the latter having taxonomic priority. We additionally studied in detail the morphology and ultrastructure of two Chlorobotryaceae members, which we describe as Neustupella aerophytica gen. et sp. nov. and Lietzensia polymorpha gen. et sp. nov. Finally, our analyses of partial genomic data from several Chlorobotryaceae representatives identified genes for hallmark flagellar proteins in all of these strains. The presence of the flagellar proteins strongly suggests that zoosporogenesis is a common trait of the family and also occurs in the members never observed to produce flagellated stages. Altogether, our work paints a rich picture of one of the most diverse principal lineages of eustigmatophyte algae.


Assuntos
Genomas de Plastídeos , Estramenópilas , DNA Ribossômico , Filogenia , Plastídeos/genética , Estramenópilas/genética
4.
J Phycol ; 58(2): 267-280, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032341

RESUMO

Crustose Verrucariaceae lichens form a distinctive black belt on seashores all over the world. This lifestyle is apparently enabled by a specific set of photobionts. However, their diversity is understudied. We sampled these lichens from the northern Patagonian Pacific coast of Chile. Using molecular markers, we identified both mycobionts and photobionts. The lichens, belonging to the genus Hydropunctaria and to the Wahlenbergiella group, hosted solely Ulvophycean photobionts. Pseudendoclonium submarinum (Kornmanniaceae, Ulvales) was the most common, but representatives of other closely related, yet undescribed, lineages were also found. Undulifilum symbioticum gen. et sp. nov. is described within Kornmanniaceae based on culture morphology and DNA sequence data. Furthermore, the free-living macroscopic genus Urospora (Acrosiphoniaceae, Ulotrichales) is reported as a lichen photobiont for the first time and is the first of its kind in the order. These results indicate that undescribed algal diversity is waiting to be uncovered in seashore lichens.


Assuntos
Ascomicetos , Clorófitas , Líquens , Clorófitas/genética , Líquens/genética , Filogenia , Simbiose
5.
J Phycol ; 57(1): 355-369, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33135154

RESUMO

A high degree of morphological variability is expressed between the ornately sculptured siliceous scales formed by species in the chrysophycean genus, Synura. In this study, we aimed to uncover the general principles and trends underlying the evolution of scale morphology in this genus. We assessed the relationships among thirty extant Synura species using a robust molecular analysis that included six genes, coupled with morphological characterization of the species-specific scales. The analysis was further enriched with addition of morphological information from fossil specimens and by including the unique modern species, Synura punctulosa. We inferred the phylogenetic position of the morphologically unique S. punctulosa, to be an ancient Synura lineage related to S. splendida in the section Curtispinae. Some morphological traits, including development of a keel or a labyrinth ribbing pattern on the scale, appeared once in evolution, whereas other structures, such as a hexagonal meshwork pattern, originated independently several times over geologic time. We further uncovered numerous construction principles governing scale morphology and evolution, as follows: (i) scale roundness and pore diameter decreased during evolution; (ii) elongated scales became strengthened by a higher number of struts or ribs; (iii) as a consequence of scale biogenesis, scales with spines possessed smaller basal holes than scales with a keel and; and (iv) the keel area was proportional to scale area, indicating its potential value in strengthening the scale against breakage.


Assuntos
Dióxido de Silício , Estramenópilas , Evolução Biológica , Evolução Molecular , Fósseis , Água Doce , Filogenia
6.
Ann Bot ; 126(6): 1077-1087, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32686820

RESUMO

BACKGROUND AND AIMS: While nuclear DNA content variation and its phenotypic consequences have been well described for animals, vascular plants and macroalgae, much less about this topic is known regarding unicellular algae and protists in general. The dearth of data is especially pronounced when it comes to intraspecific genome size variation. This study attempts to investigate the extent of intraspecific variability in genome size and its adaptive consequences in a microalgal species. METHODS: Propidium iodide flow cytometry was used to estimate the absolute genome size of 131 strains (isolates) of the golden-brown alga Synura petersenii (Chrysophyceae, Stramenopiles), identified by identical internal transcribed spacer (ITS) rDNA barcodes. Cell size, growth rate and genomic GC content were further assessed on a sub-set of strains. Geographic location of 67 sampling sites across the Northern hemisphere was used to extract climatic database data and to evaluate the ecogeographical distribution of genome size diversity. KEY RESULTS: Genome size ranged continuously from 0.97 to 2.02 pg of DNA across the investigated strains. The genome size was positively associated with cell size and negatively associated with growth rate. Bioclim variables were not correlated with genome size variation. No clear trends in the geographical distribution of strains of a particular genome size were detected, and strains of different genome size occasionally coexisted at the same locality. Genomic GC content was significantly associated only with genome size via a quadratic relationship. CONCLUSIONS: Genome size variability in S. petersenii was probably triggered by an evolutionary mechanism operating via gradual changes in genome size accompanied by changes in genomic GC content, such as, for example, proliferation of transposable elements. The variation was reflected in cell size and relative growth rate, possibly with adaptive consequences.


Assuntos
Chrysophyta , Genoma de Planta , Evolução Biológica , Tamanho do Genoma , Genoma de Planta/genética , Ploidias
7.
J Phycol ; 56(3): 574-591, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32065394

RESUMO

We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.


Assuntos
Estramenópilas , Canadá , Água Doce , Filogenia , Análise de Sequência de DNA , Estramenópilas/genética
8.
BMC Evol Biol ; 19(1): 20, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634905

RESUMO

BACKGROUND: The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. RESULTS: Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). CONCLUSIONS: Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.


Assuntos
Variação Genética , Genomas de Plastídeos , Genômica , Sequências Repetidas Invertidas/genética , Estramenópilas/genética , Sequência de Bases , DNA Circular/genética , Evolução Molecular , Dosagem de Genes , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência/química , RNA de Transferência/genética
9.
Mol Ecol ; 28(5): 1084-1095, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30633408

RESUMO

Although eukaryotic microorganisms are extremely numerous, diverse and essential to global ecosystem functioning, they are largely understudied by evolutionary biologists compared to multicellular macroscopic organisms. In particular, very little is known about the speciation mechanisms which may give rise to the diversity of microscopic eukaryotes. It was postulated that the enormous population sizes and ubiquitous distribution of these organisms could lead to a lack of population differentiation and therefore very low speciation rates. However, such assumptions have traditionally been based on morphospecies, which may not accurately reflect the true diversity, missing cryptic taxa. In this study, we aim to articulate the major diversification mechanisms leading to the contemporary molecular diversity by using a colonial freshwater flagellate, Synura sphagnicola, as an example. Phylogenetic analysis of five sequenced loci showed that S. sphagnicola differentiated into two morphologically distinct lineages approximately 15.4 million years ago, which further diverged into several evolutionarily recent haplotypes during the late Pleistocene. The most recent haplotypes are ecologically and biogeographically much more differentiated than the old lineages, presumably because of their persistent differentiation after the allopatric speciation events. Our study shows that in microbial eukaryotes, species diversification via the colonization of new geographical regions or ecological resources occurs much more readily than was previously thought. Consequently, divergence times of microorganisms in some lineages may be equivalent to the estimated times of speciation in plants and animals.


Assuntos
Evolução Biológica , Chrysophyta/genética , Ecossistema , Especiação Genética , Biodiversidade , Chrysophyta/crescimento & desenvolvimento , DNA Mitocondrial/genética , Água Doce , Haplótipos/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
10.
Mol Phylogenet Evol ; 134: 226-237, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30797939

RESUMO

Ecological preferences, partner compatibility, or partner availability are known to be important factors shaping obligate and intimate lichen symbioses. We considered a complex of Cladonia species, traditionally differentiated by the extent of sexual reproduction and the type of vegetative propagules, to assess if the reproductive and dispersal strategies affect mycobiont-photobiont association patterns. In total 85 lichen thalli from 72 European localities were studied, two genetic markers for both Cladonia mycobionts and Asterochloris photobionts were analyzed. Variance partitioning analysis by multiple regression on distance matrices was performed to describe and partition variance in photobiont genetic diversity. Asexually reproducing Cladonia in our study were found to be strongly specific to their photobionts, associating with only two closely related Asterochloris species. In contrast, sexually reproducing lichens associated with seven unrelated Asterochloris lineages, thus being photobiont generalists. The reproductive mode had the largest explanatory power, explaining 44% of the total photobiont variability. Reproductive and dispersal strategies are the key factors shaping photobiont diversity in this group of Cladonia lichens. A strict photobiont specialisation observed in two studied species may steer both evolutionary flexibility and responses to ecological changes of these organisms, and considerably limit their distribution ranges.


Assuntos
Ascomicetos/classificação , Biodiversidade , Clorófitas/classificação , Líquens/classificação , Dispersão de Sementes/fisiologia , Simbiose , Clorófitas/genética , Europa (Continente) , Geografia , Líquens/genética , Filogenia , Reprodução
11.
J Phycol ; 55(1): 224-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30481372

RESUMO

Mats of the green alga Trentepohlia, a genus widely distributed in the tropics as well as temperate regions, have always been perceived as homogeneous (i.e., formed by only one species). As such, their general nature and specific feature play a supportive role in the species delimitation. However, the presence of morphologically dissimilar thalli was observed under the light microscope and when cultivating a piece of a single mat. To address this, we performed DNA cloning of the rbcL gene on mat fragments of T. abietina, T. annulata, T. jolithus and T. umbrina sampled in Europe to reveal if they are composed of one or more species. We revealed that more Trentepohlia haplotypes may coexist in a single mat. In consideration of this, we conclude that the use of material isolated in unialgal culture will be almost mandatory for a taxonomic reassessment of this complicated genus. Another direct implication of this problem is that herbarium specimens consisting of field-collected material should not be used for direct sequencing. We further hypothesize the reasons why multiple haplotypes of Trentepohlia occur more frequently in the tuft-like mats. Possibly, fragments and/or cells of other microalgae, including other species of Trentepohlia, might be retained in such mats more easily than in the crustose trentepohlialean mats.


Assuntos
Clorófitas , Heterogeneidade Genética , Clonagem Molecular , DNA , Europa (Continente) , Filogenia
12.
J Phycol ; 55(4): 912-923, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31055831

RESUMO

The evolution of phenotypes is highly understudied in protists, due to the dearth of morphological characters, missing fossil record, and/or unresolved phylogeny in the majority of taxa. The chrysophyte genus Mallomonas (Stramenopiles) forms species-specific silica scales with extraordinary diversity of their ornamentation. In this paper, we molecularly characterized three additional species to provide an updated phylogeny of 43 species, and combined this with evaluations of 24 morphological traits. Using phylogenetic comparative methods, we evaluated phylogenetic signal in traits, reconstructed the trait evolution, and compared the overall phylogenetic and morphological diversity. The majority of traits showed strong phylogenetic signal and mostly dynamic evolution. Phylogenetic relatedness was often reflected by the phenotypic similarity. Both V-rib and dome are very conservative structures that are presumably involved in precise scale overlap and bristle attachment, respectively. Based on modern species, it seems the dome firstly appeared on apical and/or caudal scales, and only later emerged on body scales. Bristle was presumably present in the common ancestor and gradually elongated ever since. However, most other morphological traits readily changed during the evolution of Mallomonas.


Assuntos
Dióxido de Silício , Estramenópilas , Evolução Biológica , Evolução Molecular , Fósseis , Fenótipo , Filogenia
13.
Mol Ecol ; 27(14): 3016-3033, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29900606

RESUMO

Symbiosis plays a fundamental role in nature. Lichens are among the best known, globally distributed symbiotic systems whose ecology is shaped by the requirements of all symbionts forming the holobiont. The widespread lichen-forming fungal genus Stereocaulon provides a suitable model to study the ecology of microscopic green algal symbionts (i.e., phycobionts) within the lichen symbiosis. We analysed 282 Stereocaulon specimens, collected in diverse habitats worldwide, using the algal ITS rDNA and actin gene sequences and fungal ITS rDNA sequences. Phylogenetic analyses revealed a great diversity among the predominant phycobionts. The algal genus Asterochloris (Trebouxiophyceae) was recovered in most sampled thalli, but two additional genera, Vulcanochloris and Chloroidium, were also found. We used variation-partitioning analyses to investigate the effects of climatic conditions, substrate/habitat characteristic, spatial distribution and mycobionts on phycobiont distribution. Based on an analogy, we examined the effects of climate, substrate/habitat, spatial distribution and phycobionts on mycobiont distribution. According to our analyses, the distribution of phycobionts is primarily driven by mycobionts and vice versa. Specificity and selectivity of both partners, as well as their ecological requirements and the width of their niches, vary significantly among the species-level lineages. We demonstrated that species-level lineages, which accept more symbiotic partners, have wider climatic niches, overlapping with the niches of their partners. Furthermore, the survival of lichens on substrates with high concentrations of heavy metals appears to be supported by their association with toxicity-tolerant phycobionts. In general, low specificity towards phycobionts allows the host to associate with ecologically diversified algae, thereby broadening its ecological amplitude.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Líquens/crescimento & desenvolvimento , Simbiose/genética , Ascomicetos/genética , Evolução Biológica , Clorófitas/genética , DNA Espaçador Ribossômico/genética , Ecologia , Ecossistema , Variação Genética , Líquens/genética , Líquens/microbiologia
14.
J Eukaryot Microbiol ; 65(1): 38-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28508432

RESUMO

A complex of closely related Mallomonas taxa belonging to the section Papillosae, M. kalinae Rezácová and M. rasilis Dürrschmidt, has been studied in detail by molecular and morphometric methods. Our investigations uncovered the existence of a new species found in water bodies in Vietnam, which we describe here as Mallomonas furtiva sp. nov. This taxon is morphologically very similar to M. kalinae, from which it differs by minute, but statistically significant morphological differences on the structure of silica scales. Indeed, the principal component analysis of morphological traits measured on silica scales significantly separates all three species in the complex. Mallomonas kalinae and M. furtiva differ by number of papillae on the shield and the dome, as well as by the scale sizes. Likewise, Mallomonas rasilis and M. furtiva are primarily differentiated by the absence of submarginal anterior ribs on silica scales of the former species. Phylogenetic analyses showed that Mallomonas furtiva is closely related to M. kalinae, with which it formed a highly supported lineage. Distribution patterns of all three studied taxa are further discussed.


Assuntos
Microbiota , Estramenópilas/classificação , Proteínas de Algas/análise , DNA de Algas/análise , DNA Ribossômico/análise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Filogenia , Estramenópilas/genética , Estramenópilas/ultraestrutura , Vietnã , Áreas Alagadas
15.
Oecologia ; 186(4): 1017-1030, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29368058

RESUMO

Dispersal limitation, niche-based processes as well as historical legacies shape microbial biodiversity, but their respective influences remain unknown for many groups of microbes. We analysed metacommunity structure and functional trait variation in 148 communities of desmids, freshwater green algae, distributed throughout Europe. We delineated biogeographic modules for both taxa and sites using bipartite network analysis given that the taxa of a module co-occurred more often than expected by chance in sites of the same module. The network analysis distinguished two main acidic and neutral habitats, reflecting environmental filtering, and within each habitat separated species pools with distinct geographic locations, representing a plausible influence of historical biogeography. The geographic differentiation was consistent with a hypothesis of glacial refugia on Atlantic coast. Distance decay in community composition in addition to environmental influence further suggested a role of dispersal limitation. Next, we quantified the variation in cell volume and surface-to-volume of taxa within and among communities, to examine morphological and physiological adaptations of desmids in varying environments. Communities from continental climate contained larger desmids. Conversely, we found a functional convergence of smaller, fast-growing, desmids in oceanic regions. Overall, our findings suggest that niche-based processes, dispersal limitation, and historical legacy together drive the distribution and structure of desmid communities. Combining trait- and network-based analyses can resolve long-lasting questions in microbial ecology and biogeography, and could be successfully used in macrobial ecology too.


Assuntos
Clorófitas , Desmidiales , Biodiversidade , Europa (Continente) , Água Doce
16.
J Phycol ; 52(4): 599-617, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27135898

RESUMO

Coccoid green algae traditionally classified in Dictyochloropsis have a complex, reticulate chloroplast, when mature, without a pyrenoid. They occupy remarkably diverse ecological niches as free-living organisms or in association with lichen-forming fungi and were recently shown to form two distinct lineages within Trebouxiophyceae. We used a polyphasic approach to revise the taxonomy of the genus. Based on phylogenetic analysis of the 18S rRNA gene, and detailed morphological investigation using comparative conventional light and confocal microscopy, we have assigned these lineages to two genera, Dictyochloropsis and Symbiochloris gen. nov. We have reconsidered the diagnostic generic features as follows: Dictyochloropsis comprises only free-living algae with a reticulate chloroplast, forming lobes in a parallel arrangement at some ontogenetic stages, and which reproduce only by means of autospores. This agrees with Geitler's original diagnosis of Dictyochloropsis, but not with the later emendation by Tschermak-Woess. Consequently, the species of Dictyochloropsis sensu Tschermak-Woess are assigned to Symbiochloris, with new combinations proposed. Symbiochloris encompasses free-living and/or lichenized algae with lobed chloroplasts and that reproduce by forming zoospores characterized by two subapical isokont flagella that emerge symmetrically near the flattened apex. In addition, using coalescent-based approaches, morphological characters and secondary structure of ITS transcripts, we inferred species boundaries and taxonomic relationships within the newly proposed genera. Two species of Dictyochloropsis and nine species of Symbiochloris are delimited, including the newly described species D. asterochloroides, S. handae, S. tropica, and S. tschermakiae. Our results further support the non-monophyly of autosporine taxa within Trebouxiophyceae.


Assuntos
Proteínas de Algas/genética , Clorófitas/classificação , Clorófitas/citologia , Clorófitas/genética , DNA de Algas/genética , RNA Ribossômico 18S/genética , Alinhamento de Sequência
17.
Phycologia ; 55(4): 347-358, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293301

RESUMO

Our knowledge of the processes involved in speciation of microalgae remains highly limited. In the present study, we investigated a potential role of ecological speciation processes in diversification of the filamentous green alga Klebsormidium. We examined 12 strains representing four different genotypes. The strains were collected from sandstone and limestone rocks and were cultivated at five different pH levels ranging from pH 4 to pH 8. We determined the responses of the 12 strains to the experimental pH conditions by (1) measuring the effective quantum yield of photosystem II, and (2) determining the growth rates after cultivation at different pH levels. Strong differences were found between the results obtained by these two methods. Direct counting of cells revealed a strong ecological differentiation of strains of Klebsormidium isolated from different substrate types. Strains isolated from limestone showed the highest growth rates at higher pH levels; whereas, the strains isolated from sandstone exhibited two distinct growth responses with optima at pH 5 and 6, respectively. In contrast, the effective quantum yield of photosystem II was always down-regulated at lower pH values, probably due to dissolved inorganic carbon limitation. In general, we determined distinct ecophysiological differentiation among distantly and closely related lineages, thereby corroborating our hypothesis that the sympatric speciation of terrestrial algae is driven by ecological divergence. We clearly showed that pH is a critical ecological factor that influences the diversity of autotrophic protists in terrestrial habitats.

18.
Environ Microbiol ; 17(3): 689-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24803402

RESUMO

Despite considerable research attention during the last 10 years, the distribution and biogeography of protists remain as highly controversial issues. The presumably huge population sizes and unlimited dispersal capabilities should result in protist ubiquity. However, recent molecular investigations suggest that protist communities exhibit strong biogeographic patterns. Here, we examined the biogeographic pattern of a very common green algal genus Klebsormidium. We evaluated the geographic distribution of rbcL genotypes for 190 isolates sampled in six sampling regions located in Europe, North America and Asia. Measures of correlation between genetic and geographic distance matrices revealed a differential distribution pattern on two geographic levels. Globally, the populations were genetically homogeneous; locally, the genotypes were patchily distributed. We hypothesized that a local fine-scale structuring of genotypes may be caused by various ecological factors, in particular, by the habitat differentiation of particular genotypes. Our investigations also identified a large number of new, previously unrecognized lineages. A total of 44 genotypes were identified and more than 66% of these were reported for the first time.


Assuntos
Variação Genética/genética , Ribulose-Bifosfato Carboxilase/genética , Estreptófitas/genética , Ásia , Ecologia , Europa (Continente) , Genótipo , América do Norte , Filogeografia , Estreptófitas/classificação
19.
Int J Syst Evol Microbiol ; 65(Pt 6): 1838-1854, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25757706

RESUMO

The microalgae of the genus Asterochloris are the preferential phycobionts in Cladonia, Lepraria and Stereocaulon lichens. Recent studies have highlighted the hidden diversity of the genus, even though phycobionts hosting species of the genus Cladonia in Mediterranean and Canarian ecosystems have been poorly explored. Phylogenetic analyses were made by concatenation of the sequences obtained with a plastid - LSU rDNA - and two nuclear - internal transcribed spacer (ITS) rDNA and actin - molecular markers of the phycobionts living in several populations of the Cladonia convoluta-Cladonia foliacea complex, Cladonia rangiformis and Cladonia cervicornis s. str. widely distributed in these areas in a great variety of substrata and habitats. A new strongly supported clade was obtained in relation to the previously published Asterochloris phylogenies. Minimum genetic variation was detected between our haplotypes and other sequences available in the GenBank database. The correct identification of the fungal partners was corroborated by the ITS rDNA barcode. In this study we provide a detailed characterization comprising chloroplast morphology, and ultrastructural and phylogenetic analyses of a novel phycobiont species, here described as Asterochloris mediterranea sp. nov. Barreno, Chiva, Moya et Skaloud. A cryopreserved holotype specimen has been deposited in the Culture Collection of Algae of Charles University in Prague, Czech Republic (CAUP) as CAUP H 1015. We suggest the use of a combination of several nuclear and plastid molecular markers, as well as ultrastructural (transmission electron and confocal microscopy) techniques, both in culture and in the symbiotic state, to improve novel species delimitation of phycobionts in lichens.


Assuntos
Clorófitas/classificação , Líquens , Filogenia , Ascomicetos , Clorófitas/genética , Clorófitas/ultraestrutura , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Variação Genética , Região do Mediterrâneo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Análise de Sequência de DNA , Espanha
20.
J Phycol ; 51(3): 507-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26986666

RESUMO

The genus Asterochloris represents one of the most common, widespread, and diverse taxa of lichen photobionts. In this report, we describe and characterize six new species (A. echinata, A. friedlii, A. gaertneri, A. leprarii, A. lobophora, and A. woessiae) that were identified during our recent investigation of photobiont diversity. We found that the species differed genetically, morphologically, ecologically, and with respect to their mycobiont partners. Statistical analyses revealed significant morphological differentiation of all six newly described species, as well as their separation from previously described Asterochloris species. Chloroplast morphology represented the best morphological marker for species delineation. In fact, each species can be recognized by the dominance and unique assemblage of particular chloroplast types. Although genetically well recognized by rapidly evolving internal transcribed spacer rDNA and actin intron markers, all 13 investigated Asterochloris species shared identical small subunit rDNA sequences. We therefore demonstrated that morphologically and ecologically diverse species can frequently be grouped into a single taxonomic unit in whole-transcriptome sequencing studies, considerably affecting the resulting estimates of species diversity. Finally, we demonstrated the presence of isogamous sexual reproduction in Asterochloris, disputing the current symbiotic dogma of the loss of sexual reproduction in algal symbionts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA