Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 67(6): 1077-1093, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37191729

RESUMO

Alternaria is a plant pathogen and human allergen. Alternaria alternata is one of the most abundant fungal spores in the air. The purpose of this study was to examine whether Alternaria spp. spore concentrations can be used to predict the abundance and spatio-temporal pattern of A. alternata spores in the air. This was investigated by testing the hypothesis that A. alternata dominates airborne Alternaria spp. spores and varies spatio-temporally. Secondarily, we aimed at investigating the relationship between airborne Alternaria spp. spores and the DNA profile of A. alternata spores between two proximate (~ 7 km apart) sites. These were examined by sampling Alternaria spp. spores using Burkard 7-day and cyclone samplers for the period 2016-2018 at Worcester and Lakeside campuses of the University of Worcester, UK. Daily Alternaria spp. spores from the Burkard traps were identified using optical microscopy whilst A. alternata from the cyclone samples was detected and quantified using quantitative polymerase chain reaction (qPCR). The results showed that either A. alternata or other Alternaria species spores dominate the airborne Alternaria spore concentrations, generally depending on weather conditions. Furthermore, although Alternaria spp. spore concentrations were similar for the two proximate sites, A. alternata spore concentrations significantly varied for those sites and it is highly likely that the airborne samples contained large amounts of small fragments of A. alternata. Overall, the study shows that there is a higher abundance of airborne Alternaria allergen than reported by aerobiological networks and the majority is likely to be from spore and hyphal fragments.


Assuntos
Alternaria , Microscopia , Humanos , Alternaria/genética , Esporos Fúngicos , Microbiologia do Ar , Tempo (Meteorologia) , Alérgenos/análise
2.
Aerobiologia (Bologna) ; 38(4): 457-481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36471880

RESUMO

Alternaria is a pathogenic and allergenic fungus affecting 400 plant species and 334 million people globally. This study aimed at assessing the diversity of Alternaria species in airborne samples collected from closely located (7 km apart) and heterogeneous sites (rural, urban and unmanaged grassland) in Worcester and Lakeside, the UK. A secondary objective was to examine how the ITS1 subregion varies from ITS2 in Alternaria species diversity and composition. Airborne spores were collected using Burkard 7-day and multi-vial Cyclone samplers for the period 5 July 2016-9 October 2019. Air samples from the Cyclone were amplified using the ITS1and ITS2 subregions and sequenced using Illumina MiSeq platform whereas those from the Burkard sampler were identified and quantified using optical microscopy. Optical microscopy and eDNA revealed a high abundance of Alternaria in the rural, urban and unmanaged sites. ITS1 and ITS2 detected five and seven different Alternaria species at the three sampling sites, respectively. A. dactylidicola, A. metachromatica and A. infectoria were the most abundant. The rural, urban and unmanaged grassland sites had similar diversity (PERMANOVA) of the species due to similarity in land use and proximity of the sites. Overall, the study showed that heterogeneous and neighbouring sites with similar land uses can have similar Alternaria species. It also demonstrated that an eDNA approach can complement the classical optical microscopy method in providing more precise information on fungal species diversity in an environment for targeted management. Similar studies can be replicated for other allergenic and pathogenic fungi. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-022-09760-9.

3.
Int J Biometeorol ; 65(4): 513-526, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33175212

RESUMO

In recent years, allergies due to airborne pollen allergens have shown an increasing trend, along with the severity of allergic symptoms in most industrialized countries, while synergism with other common atmospheric pollutants has also been identified as affecting the overall quality of citizenly life. In this study, we propose the state-of-the-art WRF-Chem model, which is a complex Eulerian meteorological model integrated on-line with atmospheric chemistry. We used a combination of the WRF-Chem extended towards birch pollen, and the emission module based on heating degree days, which has not been tested before. The simulations were run for the moderate season in terms of birch pollen concentrations (year 2015) and high season (year 2016) over Central Europe, which were validated against 11 observational stations located in Poland. The results show that there is a big difference in the model's performance for the two modelled years. In general, the model overestimates birch pollen concentrations for the moderate season and highly underestimates birch pollen concentrations for the year 2016. The model was able to predict birch pollen concentrations for first allergy symptoms (above 20 pollen m-3) as well as for severe symptoms (above 90 pollen m-3) with probability of detection at 0.78 and 0.68 and success ratio at 0.75 and 0.57, respectively for the year 2015. However, the model failed to reproduce these parameters for the year 2016. The results indicate the potential role of correcting the total seasonal pollen emission in improving the model's performance, especially for specific years in terms of pollen productivity. The application of chemical transport models such as WRF-Chem for pollen modelling provides a great opportunity for simultaneous simulations of chemical air pollution and allergic pollen with one goal, which is a step forward for studying and understanding the co-exposure of these particles in the air.


Assuntos
Betula , Pólen , Alérgenos , Europa (Continente) , Polônia
4.
Aerobiologia (Bologna) ; 33(3): 315-326, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955109

RESUMO

We have investigated the relationship between the inflow of air masses and the ragweed pollen concentration in SW Poland (Wroclaw) for a 10-year period of 2005-2014. The HYSPLIT trajectory model was used to verify whether episodes of high concentrations can be related to regions outside of the main known ragweed centres in Europe, like Pannonian Plain, northern Italy and Ukraine. Furthermore, we used two different meteorological data sets (the global GDAS data set and from the WRF mesoscale model; the meteorological parameters were: U and V wind components, temperature and relative humidity) into HYSPLIT to evaluate the influence of meteorological input on calculated trajectories for high concentration ragweed episodes. The results show that the episodes of high pollen concentration (above 20 pm-3) represent a great part of total recorded ragweed pollen in Wroclaw, but occur rarely and not in all years. High pollen episodes are connected with air masses coming from south and south-west Europe, which confirms the existence of expected ragweed centres but showed that other centres near Wroclaw are not present. The HYSPLIT simulations with two different meteorological inputs indicated that footprint studies on ragweed benefit from a higher resolution meteorological data sets.

5.
Appl Environ Microbiol ; 82(7): 1978-1991, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801574

RESUMO

Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions.


Assuntos
Poluentes Atmosféricos/química , Microalgas/isolamento & purificação , Ar/análise , Poluentes Atmosféricos/classificação , Poluentes Atmosféricos/isolamento & purificação , Ecossistema , Monitoramento Ambiental , Microalgas/classificação , Microalgas/genética
6.
Int J Biometeorol ; 60(4): 489-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26266481

RESUMO

High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m(-3)), moderate (50-99 s m(-3)), high (100-149 s m(-3)) and very high (150 < n s m(-3)), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).


Assuntos
Poluentes Atmosféricos/análise , Alérgenos/análise , Ganoderma , Modelos Teóricos , Esporos Fúngicos/isolamento & purificação , Previsões , Análise Multivariada , Redes Neurais de Computação , Análise de Regressão , Reino Unido , Tempo (Meteorologia)
7.
Int J Biometeorol ; 58(3): 337-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23334443

RESUMO

This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.


Assuntos
Poluição do Ar/estatística & dados numéricos , Alérgenos/análise , Atmosfera/química , Monitoramento Ambiental/métodos , Olea/química , Pólen/química , Vento , Poluentes Atmosféricos/análise , Atmosfera/análise , Cidades/estatística & dados numéricos , Clima , Simulação por Computador , Modelos Estatísticos , Portugal , Estações do Ano , Análise Espaço-Temporal
8.
Sci Total Environ ; 943: 173649, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852865

RESUMO

This research builds upon a previous study that explored the potential of the modified WIBS-4+ to selectively differentiate and detect different bioaerosol classes. The current work evaluates the influence of meteorological and air quality parameters on bioaerosol concentrations, specifically pollen and fungal spore dynamics. Temperature was found to be the most influential parameter in terms of pollen production and release, showing a strong positive correlation. Wind data analysis provided insights into the potential geographic origins of pollen and fungal spore concentrations. Fungal spores were primarily shown to originate from a westerly direction, corresponding to agricultural land use, whereas pollen largely originated from a North-easterly direction, corresponding to several forests. The influence of air quality was also analysed to understand its potential impact on the WIBS fluorescent parameters investigated. Most parameters had a negative association with fungal spore concentrations, whereas several anthropogenic influences showed notable positive correlations with daily pollen concentrations. This is attributed to similar driving forces (meteorological parameters) and geographical origins. In addition, the WIBS showed a significant correlation with anthropogenic pollutants originating from combustion sources, suggesting the potential for such modified spectroscopic instruments to be utilized as air quality monitors. By combining all meteorological and pollution data along with WIBS-4+ channel data, a set of Multiple Linear Regression (MLR) analyses were completed. Successful results with R2 values ranging from 0.6 to 0.8 were recorded. The inclusion of meteorological parameters was dependent on the spore or pollen type being examined.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monitoramento Ambiental , Pólen , Esporos Fúngicos , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Microbiologia do Ar , Vento , Análise Espectral/métodos
9.
Sci Total Environ ; 905: 167042, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709071

RESUMO

Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are described.


Assuntos
Poluentes Atmosféricos , Asma , Alérgenos/análise , Pólen/química , Material Particulado/análise , Europa (Continente) , Poluentes Atmosféricos/análise
10.
Sci Total Environ ; 819: 153148, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041944

RESUMO

Alternaria spores are pathogenic to agricultural crops, and the longest and the most severe sporulation seasons are predominantly recorded in rural areas, e.g. the Pannonian Plain (PP) in South-Central Europe. In Poland (Central Europe), airborne Alternaria spore concentrations peak between July and August. In this study, we test the hypothesis that the PP is the source of Alternaria spores recorded in Poland after the main sporulation season (September-October). Airborne Alternaria spores (2005-2019) were collected using volumetric Hirst spore traps located in 38 locations along the potential pathways of air masses, i.e. from Serbia, Romania and Hungary, through the Czech Republic, Slovakia and Ukraine, to Northern Poland. Three potential episodes of Long Distance Transport (LDT) were selected and characterized in detail, including the analysis of Alternaria spore data, back trajectory analysis, dispersal modelling, and description of local weather and mesoscale synoptic conditions. During selected episodes, increases in Alternaria spore concentrations in Poznan were recorded at unusual times that deviated from the typical diurnal pattern, i.e. at night or during morning hours. Alternaria spore concentrations on the PP were very high (>1000 spores/m3) at that time. The presence of non-local Ambrosia pollen, common to the PP, were also observed in the air. Air mass trajectory analysis and dispersal modelling showed that the northwest part of the PP, north of the Transdanubian Mountains, was the potential source area of Alternaria spores. Our results show that Alternaria spores are transported over long distances from the PP to Poland. These spores may markedly increase local exposure to Alternaria spores in the receptor area and pose a risk to both human and plant health. Alternaria spores followed the same atmospheric route as previously described LDT ragweed pollen, revealing the existence of an atmospheric super highway that transports bioaerosols from the south to the north of Europe.


Assuntos
Alérgenos , Alternaria , Microbiologia do Ar , Alérgenos/análise , Humanos , Polônia , Estações do Ano , Sérvia , Esporos Fúngicos
11.
Int J Biometeorol ; 55(4): 633-44, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21057819

RESUMO

Previous studies have shown that ragweed pollen arrives in Poland from sources in the south, in Slovakia, the Czech Republic, Hungary and Austria. It is likely that ragweed pollen also arrives from sources in the southeast (e.g. Ukraine). This hypothesis was investigated using 13 years of pollen data and back-trajectory analysis. Ambrosia pollen data were collected at three sites in Poland, Rzeszów, Kraków and Poznan. The amount of ragweed pollen recorded at Rzeszów was significantly higher than in Poznan and Kraków. This can be related to either a higher abundance of local populations of Ambrosia in south-east Poland or the proximity of Rzeszów to foreign sources of ragweed pollen. The combined results of pollen measurements and air mass trajectory calculations identified plumes of Ambrosia pollen that were recorded at Rzeszów, Kraków and Poznan on 4 and 5 September 1999 and 3 September 2002. These plumes arrived at the pollen-monitoring sites from an easterly direction, indicating sources of Ambrosia pollen in eastern Poland or Ukraine. This identifies Ukraine as a possible new source of ragweed pollen for Poland and therefore an important source area of Ambrosia pollen on the European Continent.


Assuntos
Alérgenos/análise , Ambrosia/efeitos adversos , Pólen/efeitos adversos , Movimentos do Ar , Alérgenos/efeitos adversos , Ambrosia/imunologia , Clima , Humanos , Conceitos Meteorológicos , Polônia , Pólen/imunologia , Hipersensibilidade Respiratória/etiologia , Estações do Ano , Ucrânia
12.
Sci Total Environ ; 793: 148509, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175598

RESUMO

Ganoderma comprises a common bracket fungal genus that causes basal stem rot in deciduous and coniferous trees and palms, thus having a large economic impact on forestry production. We estimated pathogen abundance using long-term, daily spore concentration data collected in five biogeographic regions in Europe and SW Asia. We hypothesized that pathogen abundance in the air depends on the density of potential hosts (trees) in the surrounding area, and that its spores originate locally. We tested this hypothesis by (1) calculating tree cover density, (2) assessing the impact of local meteorological variables on spore concentration, (3) computing back trajectories, (4) developing random forest models predicting daily spore concentration. The area covered by trees was calculated based on Tree Density Datasets within a 30 km radius from sampling sites. Variations in daily and seasonal spore concentrations were cross-examined between sites using a selection of statistical tools including HYSPLIT and random forest models. Our results showed that spore concentrations were higher in Northern and Central Europe than in South Europe and SW Asia. High and unusually high spore concentrations (> 90th and > 98th percentile, respectively) were partially associated with long distance transported spores: at least 33% of Ganoderma spores recorded in Madeira during days with high concentrations originated from the Iberian Peninsula located >900 km away. Random forest models developed on local meteorological data performed better in sites where the contribution of long distance transported spores was lower. We found that high concentrations were recorded in sites with low host density (Leicester, Worcester), and low concentrations in Kastamonu with high host density. This suggests that south European and SW Asian forests may be less severely affected by Ganoderma. This study highlights the effectiveness of monitoring airborne Ganoderma spore concentrations as a tool for assessing local Ganoderma pathogen infection levels.


Assuntos
Ganoderma , Árvores , Microbiologia do Ar , Monitoramento Ambiental , Europa (Continente) , Esporos Fúngicos
13.
PLoS One ; 15(1): e0219335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940348

RESUMO

Species introduced outside their natural range threaten global biodiversity and despite greater awareness of invasive species risks at ports and airports, control measures in place only concern anthropogenic routes of dispersal. Here, we use the Harlequin ladybird, Harmonia axyridis, an invasive species which first established in the UK from continental Europe in 2004, to test whether records from 2004 and 2005 were associated with atmospheric events. We used the atmospheric- chemistry transport model SILAM to model the movement of this species from known distributions in continental Europe and tested whether the predicted atmospheric events were associated with the frequency of ladybird records in the UK. We show that the distribution of this species in the early years of its arrival does not provide substantial evidence for a purely anthropogenic introduction and show instead that atmospheric events can better explain this arrival event. Our results suggest that air flows which may assist dispersal over the English Channel are relatively frequent; ranging from once a week from Belgium and the Netherlands to 1-2 times a week from France over our study period. Given the frequency of these events, we demonstrate that atmospheric-assisted dispersal is a viable route for flying species to cross natural barriers.


Assuntos
Besouros/fisiologia , Espécies Introduzidas/estatística & dados numéricos , Modelos Estatísticos , Vento , Migração Animal/fisiologia , Animais , Bélgica , França , Humanos , Método de Monte Carlo , Países Baixos , Reino Unido
14.
Environ Pollut ; 254(Pt A): 112948, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377333

RESUMO

Large-scale synoptic conditions are able to transport considerable amounts of airborne particles over entire continents by creating substantial air mass movement. This phenomenon is observed in Europe in relation to highly allergenic ragweed (Ambrosia L.) pollen grains that are transported from populations in Central Europe (mainly the Pannonian Plain and Balkans) to the North. The path taken by atmospheric ragweed pollen often passes through the highly industrialised mining region of Silesia in Southern Poland, considered to be one of the most polluted areas in the EU. It is hypothesized that chemical air pollutants released over Silesia could become mixed with biological material and be transported to less polluted regions further North. We analysed levels of air pollution during episodes of long-distance transport (LDT) of ragweed pollen to Poland. Results show that, concomitantly with pollen, the concentration of air pollutants with potential health-risk, i.e. SO2, and PM10, have also significantly increased (by 104% and 37%, respectively) in the receptor area (Western Poland). Chemical transport modelling (EMEP) and air mass back-trajectory analysis (HYSPLIT) showed that potential sources of PM10 include Silesia, as well as mineral dust from the Ukrainian steppe and the Sahara Desert. In addition, atmospheric concentrations of other allergenic biological particles, i.e. Alternaria Nees ex Fr. spores, also increased markedly (by 115%) during LDT episodes. We suggest that the LDT episodes of ragweed pollen over Europe are not a "one-component" phenomenon, but are often related to elevated levels of chemical air pollutants and other biotic and abiotic components (fungal spores and desert dust).


Assuntos
Poluentes Atmosféricos/análise , Antígenos de Plantas/análise , Monitoramento Ambiental , Extratos Vegetais/análise , Esporos Fúngicos , Movimentos do Ar , Alérgenos/análise , Ambrosia , Península Balcânica , Poeira/análise , Monitoramento Ambiental/métodos , Minerais/análise , Polônia , Pólen/química
15.
Sci Total Environ ; 686: 212-222, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176820

RESUMO

Common ragweed (Ambrosia artemisiifolia L.) is a widely distributed and harmful invasive plant that is an important source of highly allergenic pollen grains and a prominent crop weed. As a result, ragweed causes huge costs to both human health and agriculture in affected areas. Efficient mitigation requires accurate mapping of ragweed densities that, until now, has not been achieved accurately for the whole of Europe. Here we provide two inventories of common ragweed abundances with grid resolutions of 1 km and 10 km. These "top-down" inventories integrate pollen data from 349 stations in Europe with habitat and landscape management information, derived from land cover data and expert knowledge. This allows us to cover areas where surface observations are missing. Model results were validated using "bottom-up" data of common ragweed in Austria and Serbia. Results show high agreement between the two analytical methods. The inventory shows that areas with the lowest ragweed abundances are found in Northern and Southern European countries and the highest abundances are in parts of Russia, parts of Ukraine and the Pannonian Plain. Smaller hotspots are found in Northern Italy, the Rhône Valley in France and in Turkey. The top-down approach is based on a new approach that allows for cross-continental studies and is applicable to other anemophilous species. Due to its simplicity, it can be used to investigate such species that are difficult and costly to identify at larger scales using traditional vegetation surveys or remote sensing. The final inventory is open source and available as a georeferenced tif file, allowing for multiple usages, reducing costs for health services and agriculture through well-targeted management interventions.


Assuntos
Ambrosia/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Espécies Introduzidas/estatística & dados numéricos , Europa (Continente)
16.
Sci Total Environ ; 599-600: 483-499, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482306

RESUMO

Allergenic pollen is produced by the flowers of a number of trees, grasses and weeds found throughout the UK. Exposure to such pollen grains can exacerbate pollen-related asthma and allergenic conditions such as allergic rhinitis (hay fever). Maps showing the location of these allergenic taxa have many applications: they can be used to provide advice on risk assessments; combined with health data to inform research on health impacts such as respiratory hospital admissions; combined with weather data to improve pollen forecasting systems; or as inputs to pollen emission models. In this study we present 1km resolution maps of 12 taxa of trees, grass and weeds found in the UK. We have selected the main species recorded by the UK pollen network. The taxa mapped in this study were: Alnus (alder), Fraxinus (ash), Betula (birch), Corylus (hazel), Quercus (oak), Pinus (pine) and Salix (willow), Poaceae (grass), Artemisia (mugwort), Plantago (plantain), Rumex (dock, sorrels) and Urtica (nettle). We also focus on one high population centre and present maps showing local level detail around the city of London. Our results show the different geographical distributions of the 12 taxa of trees, weeds and grass, which can be used to study plants in the UK associated with allergy and allergic asthma. These maps have been produced in order to study environmental exposure and human health, although there are many possible applications. This novel method not only provides maps of many different plant types, but also at high resolution across regions of the UK, and we uniquely present 12 key plant taxa using a consistent methodology. To consider the impact on human health due to exposure of the pollen grains, it is important to consider the timing of pollen release, and its dispersal, as well as the effect on air quality, which is also discussed here.


Assuntos
Alérgenos/análise , Exposição Ambiental , Monitoramento Ambiental , Pólen/classificação , Cidades , Humanos , Londres , Plantas Daninhas/classificação , Poaceae/classificação , Estações do Ano , Árvores/classificação
17.
Sci Total Environ ; 533: 165-76, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26156135

RESUMO

Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of the most important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (>100 s m(-3)) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis show that, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW-W; and (2) NW-NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula.


Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/análise , Alternaria , Monitoramento Ambiental , Esporos Fúngicos , Espanha
18.
Int J Environ Res Public Health ; 12(3): 2837-69, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25749320

RESUMO

Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.


Assuntos
Aerossóis/efeitos adversos , Mudança Climática , Materiais de Construção/efeitos adversos , Exposição Ambiental/efeitos adversos , Mortalidade Prematura , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Clima , Europa (Continente) , Previsões , Humanos , Modelos Teóricos
19.
Environ Sci Process Impacts ; 15(12): 2213-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132127

RESUMO

Atmospheric concentrations of organochlorine pesticides (OCPs) have been measured for the first time at Station Nord, North-East Greenland, from 2008 to 2010. The data obtained are reported here. Hexachlorobenzene (HCB), endosulfan I and hexachlorocyclohexanes (HCHs) were the predominant compounds detected in the atmosphere, followed by p,p'-DDE and dieldrin. Chlordane isomers and related compounds (trans- and cis-chlordanes, heptachlor and heptachlor epoxide, trans- and cis-nonachlor) were also detected. Atmospheric concentrations of the investigated compounds were correlated with temperature using the Clausius-Clapeyron equation in order to obtain information about their transport properties. The correlation between atmospheric concentrations and temperature was not significant for endosulfan I, γ-HCH and p,p'-DDT, which indicates that direct transport from direct sources is the dominating transport mechanism for these compounds. A significant correlation with temperature was found for all the other studied pesticides and pesticide degradation products, which indicates that re-emission of these compounds from previously contaminated surfaces is an important factor for the observed variation in concentrations. Pesticide concentrations were also correlated with sea ice cover. Concentrations of the compounds that have not been in use for decades correlated with temperature and ice cover, while concentrations of compounds still in use did not correlate with either of these parameters. These observations indicate that processes such as revolatilization from the open sea surface are important mediating factors in the dynamics of anthropogenic persistent pollutants in the Arctic environment under the expected influence of climate change processes.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Clorados/análise , Resíduos de Praguicidas/análise , Camada de Gelo , Estações do Ano , Temperatura
20.
Philos Trans R Soc Lond B Biol Sci ; 368(1621): 20130166, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23713128

RESUMO

Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission-deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28-67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45-85) Tg N in 2008 to reach 132 (89-179) Tg by 2100.


Assuntos
Poluição do Ar/análise , Amônia/química , Atmosfera/análise , Mudança Climática , Clima , Modelos Teóricos , Ciclo do Nitrogênio , Amônia/análise , Animais , Aves , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA