Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(23): 11229-11234, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31118288

RESUMO

Phenylalanine hydroxylase (PAH) is a key enzyme in the catabolism of phenylalanine, and mutations in this enzyme cause phenylketonuria (PKU), a genetic disorder that leads to brain damage and mental retardation if untreated. Some patients benefit from supplementation with a synthetic formulation of the cofactor tetrahydrobiopterin (BH4) that partly acts as a pharmacological chaperone. Here we present structures of full-length human PAH (hPAH) both unbound and complexed with BH4 in the precatalytic state. Crystal structures, solved at 3.18-Å resolution, show the interactions between the cofactor and PAH, explaining the negative regulation exerted by BH4 BH4 forms several H-bonds with the N-terminal autoregulatory tail but is far from the catalytic FeII Upon BH4 binding a polar and salt-bridge interaction network links the three PAH domains, explaining the stability conferred by BH4 Importantly, BH4 binding modulates the interaction between subunits, providing information about PAH allostery. Moreover, we also show that the cryo-EM structure of hPAH in absence of BH4 reveals a highly dynamic conformation for the tetramers. Structural analyses of the hPAH:BH4 subunits revealed that the substrate-induced movement of Tyr138 into the active site could be coupled to the displacement of BH4 from the precatalytic toward the active conformation, a molecular mechanism that was supported by site-directed mutagenesis and targeted molecular dynamics simulations. Finally, comparison of the rat and human PAH structures show that hPAH is more dynamic, which is related to amino acid substitutions that enhance the flexibility of hPAH and may increase the susceptibility to PKU-associated mutations.


Assuntos
Biopterinas/análogos & derivados , Fenilalanina Hidroxilase/química , Biopterinas/química , Biopterinas/genética , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida/métodos , Mutação/genética , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética
2.
Mol Ther ; 28(2): 677-689, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31810863

RESUMO

Mutations in hydroxymethylbilane synthase (HMBS) cause acute intermittent porphyria (AIP), an autosomal dominant disease where typically only one HMBS allele is mutated. In AIP, the accumulation of porphyrin precursors triggers life-threatening neurovisceral attacks and at long-term, entails an increased risk of hepatocellular carcinoma, kidney failure, and hypertension. Today, the only cure is liver transplantation, and a need for effective mechanism-based therapies, such as pharmacological chaperones, is prevailing. These are small molecules that specifically stabilize a target protein. They may be developed into an oral treatment, which could work curatively during acute attacks, but also prophylactically in asymptomatic HMBS mutant carriers. With the use of a 10,000 compound library, we identified four binders that further increased the initially very high thermal stability of wild-type HMBS and protected the enzyme from trypsin digestion. The best hit and a selected analog increased steady-state levels and total HMBS activity in human hepatoma cells overexpressing HMBS, and in an Hmbs-deficient mouse model with a low-expressed wild-type-like allele, compared to untreated controls. Moreover, the concentration of porphyrin precursors decreased in liver of mice treated with the best hit. Our findings demonstrate the great potential of these hits for the development of a pharmacological chaperone-based corrective treatment of AIP by enhancing wild-type HMBS function independently of the patients' specific mutation.


Assuntos
Biomarcadores , Descoberta de Drogas , Porfiria Aguda Intermitente/metabolismo , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Porfiria Aguda Intermitente/etiologia , Porfiria Aguda Intermitente/terapia , Dobramento de Proteína , Proteínas/antagonistas & inibidores , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
3.
Bioinformatics ; 35(14): 2427-2433, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30500892

RESUMO

MOTIVATION: Cryo electron microscopy (EM) is currently one of the main tools to reveal the structural information of biological macromolecules. The re-construction of three-dimensional (3D) maps is typically carried out following an iterative process that requires an initial estimation of the 3D map to be refined in subsequent steps. Therefore, its determination is key in the quality of the final results, and there are cases in which it is still an open issue in single particle analysis (SPA). Small angle X-ray scattering (SAXS) is a well-known technique applied to structural biology. It is useful from small nanostructures up to macromolecular ensembles for its ability to obtain low resolution information of the biological sample measuring its X-ray scattering curve. These curves, together with further analysis, are able to yield information on the sizes, shapes and structures of the analyzed particles. RESULTS: In this paper, we show how the low resolution structural information revealed by SAXS is very useful for the validation of EM initial 3D models in SPA, helping the following refinement process to obtain more accurate 3D structures. For this purpose, we approximate the initial map by pseudo-atoms and predict the SAXS curve expected for this pseudo-atomic structure. The match between the predicted and experimental SAXS curves is considered as a good sign of the correctness of the EM initial map. AVAILABILITY AND IMPLEMENTATION: The algorithm is freely available as part of the Scipion 1.2 software at http://scipion.i2pc.es/.


Assuntos
Microscopia Crioeletrônica , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
4.
Nature ; 502(7472): 519-23, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24121435

RESUMO

Post-transcriptional modifications are essential to the cell life cycle, as they affect both pre-ribosomal RNA processing and ribosome assembly. The box C/D ribonucleoprotein enzyme that methylates ribosomal RNA at the 2'-O-ribose uses a multitude of guide RNAs as templates for the recognition of rRNA target sites. Two methylation guide sequences are combined on each guide RNA, the significance of which has remained unclear. Here we use a powerful combination of NMR spectroscopy and small-angle neutron scattering to solve the structure of the 390 kDa archaeal RNP enzyme bound to substrate RNA. We show that the two methylation guide sequences are located in different environments in the complex and that the methylation of physiological substrates targeted by the same guide RNA occurs sequentially. This structure provides a means for differential control of methylation levels at the two sites and at the same time offers an unexpected regulatory mechanism for rRNA folding.


Assuntos
Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Biocatálise , Proteínas Cromossômicas não Histona/metabolismo , Metilação , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , Pequeno RNA não Traduzido
5.
J Biol Chem ; 291(9): 4742-53, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26703464

RESUMO

G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Regulação Alostérica , Substituição de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Biologia Computacional , Bases de Dados de Proteínas , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Análise de Componente Principal , Conformação Proteica , Desdobramento de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9
6.
Bioinformatics ; 32(22): 3510-3512, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27423893

RESUMO

Bio3D-web is an online application for analyzing the sequence, structure and conformational heterogeneity of protein families. Major functionality is provided for identifying protein structure sets for analysis, their alignment and refined structure superposition, sequence and structure conservation analysis, mapping and clustering of conformations and the quantitative comparison of their predicted structural dynamics. AVAILABILITY: Bio3D-web is based on the Bio3D and Shiny R packages. All major browsers are supported and full source code is available under a GPL2 license from http://thegrantlab.org/bio3d-web CONTACT: bjgrant@umich.edu or lars.skjarven@uib.no.


Assuntos
Proteínas , Software , Interpretação Estatística de Dados , Linguagens de Programação , Alinhamento de Sequência
7.
BMC Bioinformatics ; 15: 399, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25491031

RESUMO

BACKGROUND: Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. RESULTS: Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. CONCLUSIONS: The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Proteínas Heterotriméricas de Ligação ao GTP/química , Software , Tetra-Hidrofolato Desidrogenase/química , Escherichia coli/metabolismo , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação Proteica
8.
BMC Bioinformatics ; 15: 427, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25547242

RESUMO

BACKGROUND: Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise protein flexibility and by extension, their dynamics. Further insight into the dynamics-function relationship can be gained by comparing protein motions between protein homologs and functional classifications. This can be achieved by comparing normal modes obtained from sets of evolutionary related proteins. RESULTS: We have developed an automated tool for comparative NMA of a set of pre-aligned protein structures. The user can submit a sequence alignment in the FASTA format and the corresponding coordinate files in the Protein Data Bank (PDB) format. The computed normalised squared atomic fluctuations and atomic deformation energies of the submitted structures can be easily compared on graphs provided by the web user interface. The web server provides pairwise comparison of the dynamics of all proteins included in the submitted set using two measures: the Root Mean Squared Inner Product and the Bhattacharyya Coefficient. The Comparative Analysis has been implemented on our web server for NMA, WEBnm@, which also provides recently upgraded functionality for NMA of single protein structures. This includes new visualisations of protein motion, visualisation of inter-residue correlations and the analysis of conformational change using the overlap analysis. In addition, programmatic access to WEBnm@ is now available through a SOAP-based web service. Webnm@ is available at http://apps.cbu.uib.no/webnma . CONCLUSION: WEBnm@ v2.0 is an online tool offering unique capability for comparative NMA on multiple protein structures. Along with a convenient web interface, powerful computing resources, and several methods for mode analyses, WEBnm@ facilitates the assessment of protein flexibility within protein families and superfamilies. These analyses can give a good view of how the structures move and how the flexibility is conserved over the different structures.


Assuntos
Bases de Dados de Proteínas , Internet , Redes e Vias Metabólicas , Proteínas/química , Software , Adenilato Quinase/química , Humanos , Família Multigênica , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
9.
J Am Chem Soc ; 135(15): 5819-27, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23565800

RESUMO

A key component to success in structure-based drug design is reliable information on protein-ligand interactions. Recent development in NMR techniques has accelerated this process by overcoming some of the limitations of X-ray crystallography and computational protein-ligand docking. In this work we present a new scoring protocol based on NMR-derived interligand INPHARMA NOEs to guide the selection of computationally generated docking modes. We demonstrate the performance in a range of scenarios, encompassing traditionally difficult cases such as docking to homology models and ligand dependent domain rearrangements. Ambiguities associated with sparse experimental information are lifted by searching a consensus solution based on simultaneously fitting multiple ligand pairs. This study provides a previously unexplored integration between molecular modeling and experimental data, in which interligand NOEs represent the key element in the rescoring algorithm. The presented protocol should be widely applicable for protein-ligand docking also in a different context from drug design and highlights the important role of NMR-based approaches to describe intermolecular ligand-receptor interactions.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Animais , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia
10.
Proteins ; 80(10): 2333-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22576372

RESUMO

The molecular chaperone, GroEL, essential for correct protein folding in E. coli, is composed of 14 identical subunits organized in two interacting rings, each providing a folding chamber for non-native substrate proteins. The oligomeric assembly shows positive cooperativity within each ring and negative cooperativity between the rings. Although it is well known that ATP and long-range allosteric interactions drive the functional cycle of GroEL, an atomic resolution view of how ligand binding modulates conformational adaptations over long distances remains a major challenge. Moreover, little is known on the relation between equilibrium dynamics at physiological temperatures and the allosteric transitions in GroEL. Here we present multiple all-atom molecular dynamics simulations of the GroEL-GroES assemblies at different stages of the functional cycle. Combined with an extensive analysis of the complete set of experimentally available structures, principal component analysis and conformer plots, we provide an explicit evaluation of the accessible conformational space of unliganded GroEL. Our results suggest the presence of pre-existing conformers at the equatorial domain level, and a shift of the conformational ensemble upon ATP-binding. At the inter-ring interface the simulations capture a remarkable offset motion of helix D triggered by ATP-binding to the folding active ring. The reorientation of helix D, previously only observed upon GroES association, correlates with a change of the internal dynamics in the opposite ring. This work contributes to the understanding of the molecular mechanisms in GroEL and highlights the ability of all-atom MD simulations to model long-range structural changes and allosteric events in large systems.


Assuntos
Chaperonina 10/química , Chaperonina 60/química , Proteínas de Escherichia coli/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Mutação , Análise de Componente Principal , Ligação Proteica , Conformação Proteica
11.
PLoS Comput Biol ; 7(3): e1002004, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423709

RESUMO

GroEL is an ATP dependent molecular chaperone that promotes the folding of a large number of substrate proteins in E. coli. Large-scale conformational transitions occurring during the reaction cycle have been characterized from extensive crystallographic studies. However, the link between the observed conformations and the mechanisms involved in the allosteric response to ATP and the nucleotide-driven reaction cycle are not completely established. Here we describe extensive (in total long) unbiased molecular dynamics (MD) simulations that probe the response of GroEL subunits to ATP binding. We observe nucleotide dependent conformational transitions, and show with multiple 100 ns long simulations that the ligand-induced shift in the conformational populations are intrinsically coded in the structure-dynamics relationship of the protein subunit. Thus, these simulations reveal a stabilization of the equatorial domain upon nucleotide binding and a concomitant "opening" of the subunit, which reaches a conformation close to that observed in the crystal structure of the subunits within the ADP-bound oligomer. Moreover, we identify changes in a set of unique intrasubunit interactions potentially important for the conformational transition.


Assuntos
Chaperonina 60/química , Nucleotídeos/metabolismo , Subunidades Proteicas/química , Sítios de Ligação , Chaperonina 60/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Nucleotídeos/química , Conformação Proteica , Subunidades Proteicas/metabolismo
12.
Proteins ; 79(1): 232-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21058295

RESUMO

Principal component analysis (PCA) and normal mode analysis (NMA) have emerged as two invaluable tools for studying conformational changes in proteins. To compare these approaches for studying protein dynamics, we have used a subunit of the GroEL chaperone, whose dynamics is well characterized. We first show that both PCA on trajectories from molecular dynamics (MD) simulations and NMA reveal a general dynamical behavior in agreement with what has previously been described for GroEL. We thus compare the reproducibility of PCA on independent MD runs and subsequently investigate the influence of the length of the MD simulations. We show that there is a relatively poor one-to-one correspondence between eigenvectors obtained from two independent runs and conclude that caution should be taken when analyzing principal components individually. We also observe that increasing the simulation length does not improve the agreement with the experimental structural difference. In fact, relatively short MD simulations are sufficient for this purpose. We observe a rapid convergence of the eigenvectors (after ca. 6 ns). Although there is not always a clear one-to-one correspondence, there is a qualitatively good agreement between the movements described by the first five modes obtained with the three different approaches; PCA, all-atoms NMA, and coarse-grained NMA. It is particularly interesting to relate this to the computational cost of the three methods. The results we obtain on the GroEL subunit contribute to the generalization of robust and reproducible strategies for the study of protein dynamics, using either NMA or PCA of trajectories from MD simulations.


Assuntos
Chaperonina 60/química , Análise de Componente Principal , Algoritmos , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína
13.
J Exp Biol ; 214(Pt 4): 582-92, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21270306

RESUMO

Vitellogenin, an egg-yolk protein precursor common to oviparous animals, is found abundantly in honeybee workers - a caste of helpers that do not usually lay eggs. Instead, honeybee vitellogenin (180 kDa) participates in processes other than reproduction: it influences hormone signaling, food-related behavior, immunity, stress resistance and longevity. The molecular basis of these functions is largely unknown. Here, we establish and compare the molecular properties of vitellogenin from honeybee hemolymph (blood) and abdominal fat body, two compartments that are linked to vitellogenin functions. Our results reveal a novel 40 kDa vitellogenin fragment in abdominal fat body tissue, the main site for vitellogenin synthesis and storage. Using MALDI-TOF combined with MS/MS mass-spectroscopy, we assign the 40 kDa fragment to the N terminus of vitellogenin, whereas a previously observed 150 kDa fragment corresponded to the remainder of the protein. We show that both protein units are N glycosylated and phosphorylated. Focusing on the novel 40 kDa fragment, we present a homology model based on the structure of lamprey lipovitellin that includes a conserved ß-barrel-like shape, with a lipophilic cavity in the interior and two insect-specific loops that have not been described before. Our data indicate that the honeybee fat body vitellogenin experiences cleavage unlike hemolymph vitellogenin, a pattern that can suggest a tissue-specific role. Our experiments advance the molecular understanding of vitellogenin, of which the multiple physiological and behavioral effects in honeybees are well established.


Assuntos
Abelhas/química , Modelos Moleculares , Vitelogeninas/sangue , Vitelogeninas/química , Animais , Sequência de Bases , Corpo Adiposo/química , Feminino , Imunofluorescência , Hemolinfa/química , Modelos Genéticos , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Vitelogeninas/genética
14.
Protein Sci ; 30(1): 20-30, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734663

RESUMO

Bio3D is a family of R packages for the analysis of biomolecular sequence, structure, and dynamics. Major functionality includes biomolecular database searching and retrieval, sequence and structure conservation analysis, ensemble normal mode analysis, protein structure and correlation network analysis, principal component, and related multivariate analysis methods. Here, we review recent package developments, including a new underlying segregation into separate packages for distinct analysis, and introduce a new method for structure analysis named ensemble difference distance matrix analysis (eDDM). The eDDM approach calculates and compares atomic distance matrices across large sets of homologous atomic structures to help identify the residue wise determinants underlying specific functional processes. An eDDM workflow is detailed along with an example application to a large protein family. As a new member of the Bio3D family, the Bio3D-eddm package supports both experimental and theoretical simulation-generated structures, is integrated with other methods for dissecting sequence-structure-function relationships, and can be used in a highly automated and reproducible manner. Bio3D is distributed as an integrated set of platform independent open source R packages available from: http://thegrantlab.org/bio3d/.


Assuntos
Biologia Computacional , Bases de Dados de Proteínas , Simulação de Dinâmica Molecular , Proteínas/química , Software , Conformação Proteica
15.
Methods Mol Biol ; 2112: 15-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006275

RESUMO

Bio3D-web is an online application for the interactive analysis of sequence-structure-dynamics relationships in user-defined protein structure sets. Major functionality includes structure database searching, sequence and structure conservation assessment, inter-conformer relationship mapping and clustering with principal component analysis (PCA), and flexibility prediction and comparison with ensemble normal mode analysis (eNMA). Collectively these methods allow users to start with a single sequence or structure and characterize the structural, conformational, and internal dynamic properties of homologous proteins for which there are high-resolution structures available. Functionality is also provided for the generation of custom PDF, Word, and HTML analysis reports detailing all user-specified analysis settings and corresponding results. Bio3D-web is available at http://thegrantlab.org/bio3d/webapps , as a Docker image https://hub.docker.com/r/bio3d/bio3d-web/ , or downloadable source code https://bitbucket.org/Grantlab/bio3d-web .


Assuntos
Conformação Proteica , Proteínas/química , Alinhamento de Sequência , Interpretação Estatística de Dados , Bases de Dados Factuais , Software
16.
BMC Bioinformatics ; 8: 232, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17601351

RESUMO

BACKGROUND: To understand the mechanism by which a protein transmits a signal through the cell membrane, an understanding of the flexibility of its transmembrane (TM) region is essential. Normal Mode Analysis (NMA) has become the method of choice to investigate the slowest motions in macromolecular systems. It has been widely used to study transmembrane channels and pumps. It relies on the hypothesis that the vibrational normal modes having the lowest frequencies (also named soft modes) describe the largest movements in a protein and are the ones that are functionally relevant. In particular NMA can be used to study dynamics of TM regions, but no tool making this approach available for non-experts, has been available so far. RESULTS: We developed the web-application TMM@ (TransMembrane alpha-helical Mobility analyzer). It uses NMA to characterize the propensity of transmembrane alpha-helices to be displaced. Starting from a structure file at the PDB format, the server computes the normal modes of the protein and identifies which helices in the bundle are the most mobile. Each analysis is performed independently from the others and results can be visualized using only a web browser. No additional plug-in or software is required. For users who would like to further analyze the output data with their favourite software, raw results can also be downloaded. CONCLUSION: We built a novel and unique tool, TMM@, to study the mobility of transmembrane alpha-helices. The tool can be applied to for example membrane transporters and provides biologists studying transmembrane proteins with an approach to investigate which alpha-helices are likely to undergo the largest displacements, and hence which helices are most likely to be involved in the transportation of molecules in and out of the cell.


Assuntos
Membrana Celular/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Químicos , Modelos Moleculares , Software , Interface Usuário-Computador , Algoritmos , Gráficos por Computador , Simulação por Computador , Internet , Estrutura Secundária de Proteína , Análise de Sequência de Proteína
17.
J Vis Exp ; (125)2017 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-28745621

RESUMO

We demonstrate the usage of Bio3D-web for the interactive analysis of biomolecular structure data. The Bio3D-web application provides online functionality for: (1) The identification of related protein structure sets to user specified thresholds of similarity; (2) Their multiple alignment and structure superposition; (3) Sequence and structure conservation analysis; (4) Inter-conformer relationship mapping with principal component analysis, and (5) comparison of predicted internal dynamics via ensemble normal mode analysis. This integrated functionality provides a complete online workflow for investigating sequence-structure-dynamic relationships within protein families and superfamilies.


Assuntos
Sequência de Aminoácidos/genética , Linguagens de Programação , Proteínas/química , Alinhamento de Sequência/métodos , Interpretação Estatística de Dados
18.
Sci Rep ; 7(1): 13959, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066752

RESUMO

Nucleophosmin (NPM) is a nucleolar protein involved in ribosome assembly and cell homeostasis. Mutations in the C-terminal domain of NPM that impair native folding and localization are associated with acute myeloid leukemia (AML). We have performed a high-throughput screening searching for compounds that stabilize the C-terminal domain. We identified three hit compounds which show the ability to increase the thermal stability of both the C-terminal domain as well as full-length NPM. The best hit also seemed to favor folding of an AML-like mutant. Computational pocket identification and molecular docking support a stabilization mechanism based on binding of the phenyl/benzene group of the compounds to a particular hydrophobic pocket and additional polar interactions with solvent-accessible residues. Since these results indicate a chaperoning potential of our candidate hits, we tested their effect on the subcellular localization of AML-like mutants. Two compounds partially alleviated the aggregation and restored nucleolar localization of misfolded mutants. The identified hits appear promising as pharmacological chaperones aimed at therapies for AML based on conformational stabilization of NPM.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Mutação , Nucleofosmina , Domínios Proteicos/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
19.
J Phys Chem B ; 120(33): 8276-88, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27056373

RESUMO

Allosteric regulation is a primary means of controlling protein function. By definition, allostery involves the propagation of structural dynamic changes between distal protein sites that yields a functional change. Gaining improved knowledge of these fundamental mechanisms is important for understanding many biomolecular processes and for guiding protein engineering and drug design efforts. In this work we compare and contrast a range of normal mode analysis (NMA) approaches together with network analysis for the prediction of structural dynamics and allosteric sites. Application to heterotrimeric G proteins, hemoglobin, and caspase 7 indicates that atomistic elastic network models provide improved predictions of experimental allosteric mutation sites. Results for G proteins also display an improved consistency with those derived from more computationally demanding MD simulations. Application of this approach across available experimental structures for a given protein family in a unified manner, that we refer to as ensemble NMA, yields the best overall predictive performance. We propose that this atomistic ensemble NMA approach represents an efficient and powerful tool for guiding the exploration of coupled motions and allosteric mechanisms in cases where multiple structures are available and where MD may prove prohibitively expensive.


Assuntos
Caspase 7/química , Subunidades alfa de Proteínas de Ligação ao GTP/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Hemoglobinas/química , Regulação Alostérica , Sítio Alostérico , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Termodinâmica
20.
Sci Rep ; 6: 30390, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27462005

RESUMO

Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners.


Assuntos
Tirosina 3-Mono-Oxigenase/química , Domínio Catalítico , Dopamina/farmacologia , Estabilidade Enzimática , Humanos , Ligação Proteica , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA