Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 122(3): 460-469, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36617191

RESUMO

Microorganisms must face various inconvenient conditions; therefore, they developed several approaches for protection. Such a strategy also involves the accumulation of compatible solutes, also called osmolytes. It has been proved that the monomer unit 3-hydroxybutyrate (3HB), which is present in sufficient concentration in poly(3-hydroxybutyrate) (PHB)-accumulating cells, serves as a chemical chaperone protecting enzymes against heat and oxidative stress and as a cryoprotectant for enzymes, bacterial cells, and yeast. The stress robustness of the cells is also strongly dependent on the behavior and state of intracellular water, especially during stress exposure. For a better understanding of the protective mechanism and effect of strongly hydrophilic 3HB in solutions at a wide range of temperatures, a binary phase diagram of system sodium 3HB (Na3HB)-water in equilibrium and the state diagrams showing the glass transitions in the system were constructed. To investigate the activity of water in various compositions of the Na3HB/water system, three experimental techniques have been used (dynamic water sorption analysis, water activity measurements, and sorption calorimetry). First, Na3HB proved its hydrophilic nature, which is very comparable with known compatible solutes (trehalose). Results of differential scanning calorimetry demonstrated that Na3HB is also highly effective in depressing the freezing point and generating a large amount of nonfrozen water (1.35 g of water per gram of Na3HB). Therefore, Na3HB represents a very effective cryoprotectant that can be widely used for numerous applications.


Assuntos
Hidroxibutiratos , Poliésteres , Ácido 3-Hidroxibutírico , Poliésteres/química , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Temperatura , Temperatura Alta , Saccharomyces cerevisiae
2.
Appl Microbiol Biotechnol ; 104(11): 4795-4810, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32303817

RESUMO

Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure. It seems that protective mechanisms of PHA granules are associated with their extraordinary architecture and biophysical properties as well as with the complex and deeply interconnected nature of PHA metabolism. Therefore, this review aims at describing novel and unexpected properties of PHA granules with respect to their contribution to stress tolerance of various prokaryotes including common mesophilic heterotrophic bacteria, but also extremophiles or photo-autotrophic cyanobacteria. KEY POINTS: • PHA granules present in bacterial cells reveal unique properties and functions. • PHA enhances stress robustness of bacterial cells.


Assuntos
Bactérias/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Estresse Fisiológico , Cupriavidus necator/metabolismo , Cianobactérias/metabolismo , Pressão Osmótica
3.
Appl Microbiol Biotechnol ; 103(4): 1905-1917, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30623200

RESUMO

Polyhydroxyalkanoates (PHA) are storage polymers accumulated by numerous prokaryotes in form of intracellular granules. Native PHA granules are formed by amorphous polymer which reveals considerably higher elasticity and flexibility as compared to crystalline pure PHA polymers. The fact that bacteria store PHA in amorphous state has great biological consequences. It is not clear which mechanisms protect amorphous polymer in native granules from transition into thermodynamically favorable crystalline state. Here, we demonstrate that exposition of bacterial cells to particular stressors induces granules aggregation, which is the first but not sufficient condition for PHA crystallization. Crystallization of the polymer occurs only when the stressed bacterial cells are subsequently dried. The fact that both granules aggregation and cell drying must occur to induce crystallization of PHA indicates that both previously suggested hypotheses about mechanisms of stabilization of amorphous state of native PHA are valid and, in fact, both effects participate synergistically. It seems that the amorphous state of the polymer is stabilized kinetically by the low rate of crystallization in limited volume in small PHA granules and, moreover, water present in PHA granules seems to function as plasticizer protecting the polymer from crystallization, as confirmed experimentally for the first time by the present work.


Assuntos
Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo , Células Procarióticas/metabolismo , Cristalização , Desidratação
4.
Appl Microbiol Biotechnol ; 102(4): 1923-1931, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29349494

RESUMO

Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.


Assuntos
Cupriavidus necator/metabolismo , Cupriavidus necator/efeitos da radiação , Poli-Hidroxialcanoatos/metabolismo , Raios Ultravioleta , Cupriavidus necator/química , DNA Bacteriano/metabolismo , DNA Bacteriano/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Espécies Reativas de Oxigênio/análise
5.
Comput Struct Biotechnol J ; 23: 2681-2694, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39035834

RESUMO

Purple photosynthetic bacteria (PPB) are versatile microorganisms capable of producing various value-added chemicals, e.g., biopolymers and biofuels. They employ diverse metabolic pathways, allowing them to adapt to various growth conditions and even extreme environments. Thus, they are ideal organisms for the Next Generation Industrial Biotechnology concept of reducing the risk of contamination by using naturally robust extremophiles. Unfortunately, the potential of PPB for use in biotechnology is hampered by missing knowledge on regulations of their metabolism. Although Rhodospirillum rubrum represents a model purple bacterium studied for polyhydroxyalkanoate and hydrogen production, light/chemical energy conversion, and nitrogen fixation, little is known regarding the regulation of its metabolism at the transcriptomic level. Using RNA sequencing, we compared gene expression during the cultivation utilizing fructose and acetate as substrates in case of the wild-type strain R. rubrum DSM 467T and its knock-out mutant strain that is missing two polyhydroxyalkanoate synthases PhaC1 and PhaC2. During this first genome-wide expression study of R. rubrum, we were able to characterize cultivation-driven transcriptomic changes and to annotate non-coding elements as small RNAs.

6.
Life (Basel) ; 14(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063660

RESUMO

Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known. Synechocystis (cyanobacteria) accumulates PHB using light as energy and CO2 as carbon source. The main trigger for PHB accumulation in cyanobacteria is nitrogen and phosphorous depletion with simultaneous surplus of carbon and energy. For the above reasons, obtaining knowledge about external factors influencing PHB accumulation is of highest interest. This study compares the effect of continuous light exposure and day/night (16/8 h) cycles on selected physiology parameters of three Synechocystis strains. We show that continuous illumination at moderate light intensities leads to an increased PHB accumulation in Synechocystis salina CCALA 192 (max. 14.2% CDW - cell dry weight) compared to day/night cycles (3.7% CDW). In addition to PHB content, glycogen and cell size increased, while cell density and cell viability decreased. The results offer new approaches for further studies to gain deeper insights into the role of PHB in cyanobacteria to obtain bioplastics in a more sustainable and environmentally friendly way.

7.
Microorganisms ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838460

RESUMO

Four non-conventional oleaginous and pigmented yeast strains of Metschnikowia pulcherrima, Cystofilobasidium infirmominiatum, Phaffia rhodozyma, and Rhodotorula kratochvilovae were used in this study. Complex yeast extracts were prepared and tested for biological activity, safety, and effect on human health. In this paper, we measured the antioxidant activity and antimicrobial effect of yeast biomass as a whole and their extracts to compare the influence of carotenoids and other bioactive substances in the studied biomass. All yeast extracts exhibited a significant dose-dependent antimicrobial effect against both G+ and G- bacteria and had a strong antioxidant effect. No cytotoxicity in the mouse melanoma B16F1 cell line was found in concentrations up to 20% of rehydrated biomass in cell medium. All of the extracts were cytotoxic at a concentration of 5 mg of extract/g of dry biomass. All the pigmented yeast extracts showed some positive results for apoptosis of murine melanoma cell lines and are therefore strong candidates positively effect human health. Red yeast cell biomass is a prospective material with many attractive biological functions and can be used in the food industry, as a pharmaceutical material, or in the feed industry.

8.
Microorganisms ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37110311

RESUMO

Sample preparation protocols for conventional high voltage transmission electron microscopy (TEM) heavily rely on the usage of staining agents containing various heavy metals, most commonly uranyl acetate and lead citrate. However high toxicity, rising legal regulations, and problematic waste disposal of uranyl acetate have increased calls for the reduction or even complete replacement of this staining agent. One of the strategies for uranyless imaging is the employment of low-voltage transmission electron microscopy. To investigate the influence of different imaging and staining strategies on the final image of cyanobacterial cells, samples stained by uranyl acetate with lead citrate, as well as unstained samples, were observed using TEM and accelerating voltages of 200 kV or 25 kV. Moreover, to examine the possibilities of reducing chromatic aberration, which often causes issues when imaging using electrons of lower energies, samples were also imaged using a scanning transmission electron microscopy at 15 kV accelerating voltages. The results of this study demonstrate that low-voltage electron microscopy offers great potential for uranyless electron microscopy.

9.
Int J Biol Macromol ; 206: 977-989, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35314264

RESUMO

Polyhydroxyalkanoates (PHA) are abundant microbial polyesters accumulated in the form of intracellular granules by numerous prokaryotes primarily as storage of carbon and energy. Apart from their storage function, the presence of PHA also enhances the robustness of the microbial cells against various stressors. In this work, we investigated the role of PHA in Cupriavidus necator, a model organism concerning PHA metabolism, for adaptation to osmotic pressure and copper ions. In long-term laboratory evolution experiments, the bacterial culture was cultivated in presence of elevated doses of sodium chloride or copper ions (incubations lasted 78 passages for Cu2+ and 68 passages for NaCl) and the evolved strains were compared with the wild-type strain in terms of growth and PHA production capacity, cell morphology (investigated by various electron microscopy techniques), activities of selected enzymes involved in PHA metabolism and other crucial metabolic pathways, the chemical composition of bacterial biomass (determined by infrared and Raman spectroscopy) and also considering robustness against various stressors. The results confirmed the important role of PHA metabolism for adaptation to both tested stressors.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Cobre/metabolismo , Cupriavidus necator/metabolismo , Íons/metabolismo , Pressão Osmótica , Cloreto de Sódio/metabolismo
10.
Polymers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631874

RESUMO

A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate-P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.

11.
Polymers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631889

RESUMO

Films prepared from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers produced by Aneurinibacillus sp. H1 using an automatic film applicator were homogeneous and had a defined thickness, which allowed a detailed study of physicochemical properties. Their properties were compared with those of a poly (3-hydroxybutyrate) homopolymer film prepared by the same procedure, which proved to be significantly more crystalline by DSC and XRD. Structural differences between samples had a major impact on their properties. With increasing 4-hydroxybutyrate content, the ductility and release rate of the model hydrophilic active ingredient increased significantly. Other observed properties, such as the release of the hydrophobic active substance, the contact angle with water and ethylene glycol, or the surface morphology and roughness, were also affected by the composition. The identified properties predetermine these copolymers for wide use in areas such as biomedicine or smart biodegradable packaging for food or cosmetics. The big advantage is the possibility of fine-tuning properties simply by changing the fermentation conditions.

12.
Polymers (Basel) ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517027

RESUMO

Aneurinibacillus sp. H1 is a promising, moderately thermophilic, novel Gram-positive bacterium capable of the biosynthesis of polyhydroxyalkanoates (PHA) with tunable monomer composition. In particular, the strain is able to synthesize copolymers of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate (3HV) with remarkably high 4HB and 3HV fractions. In this study we performed an in-depth material analysis of PHA polymers produced by Aneurinibacillus sp. H1 in order to describe how the monomer composition affects fundamental structural and physicochemical parameters of the materials in the form of solvent-casted films. Results of infrared spectroscopy, X-ray diffractometry and thermal analysis clearly show that controlling the monomer composition enables optimization of PHA crystallinity both qualitatively (the type of the crystalline lattice) and quantitatively (the overall degree of crystallinity). Furthermore, resistance of the films against thermal and/or enzymatic degradation can also be manipulated by the monomer composition. Results of this study hence confirm Aneurinibacillus sp. H1 as an auspicious candidate for thermophilic production of PHA polymers with material properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.

13.
Polymers (Basel) ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485983

RESUMO

Extremophilic microorganisms are considered being very promising candidates for biotechnological production of various products including polyhydroxyalkanoates (PHA). The aim of this work was to evaluate the PHA production potential of a novel PHA-producing thermophilic Gram-positive isolate Aneurinibacillus sp. H1. This organism was capable of efficient conversion of glycerol into poly(3-hydroxybutyrate) (P3HB), the homopolyester of 3-hydroxybutyrate (3HB). In flasks experiment, under optimal cultivation temperature of 45 °C, the P3HB content in biomass and P3HB titers reached 55.31% of cell dry mass and 2.03 g/L, respectively. Further, the isolate was capable of biosynthesis of PHA copolymers and terpolymers containing high molar fractions of 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB). Especially 4HB contents in PHA were very high (up to 91 mol %) when 1,4-butanediol was used as a substrate. Based on these results, it can be stated that Aneurinibacillus sp. H1 is a very promising candidate for production of PHA with tailored material properties.

14.
N Biotechnol ; 49: 129-136, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30389520

RESUMO

Polyhydroxyalkanoates (PHA) are microbial polyesters which accumulate as intracellular granules in numerous prokaryotes and mainly serve as storage materials; beyond this primary function, PHA also enhance the robustness of bacteria against various stress factors. We have observed that the presence of PHA in bacterial cells substantially enhances their ability to maintain cell integrity when suddenly exposed to osmotic imbalances. In the case of the non-halophilic bacterium Cupriavidus necator, the presence of PHA decreased plasmolysis-induced cytoplasmic membrane damage during osmotic up-shock, which subsequently enabled the cells to withstand subsequent osmotic downshock. In contrast, sudden induction of osmotic up- and subsequent down-shock resulted in massive hypotonic lysis of non-PHA containing cells as determined by Transmission Electron Microscopy and Thermogravimetrical Analysis. Furthermore, a protective effect of PHA against hypotonic lysis was also observed in the case of the halophilic bacterium Halomonas halophila; here, challenged PHA-rich cells were capable of retaining cell integrity more effectively than their PHA-poor counterparts. Hence, it appears that the fact that PHA granules, as an added value to their primary storage function, protect halophiles from the harmful effect of osmotic down-shock might explain why PHA accumulation is such a common feature among halophilic prokaryotes. The results of this study, apart from their fundamental importance, are also of practical biotechnological significance: because PHA-rich bacterial cells are resistant to osmotic imbalances, they could be utilized in in-situ bioremediation technologies or during enrichment of mixed microbial consortia in PHA producers under conditions of fluctuating salinity.


Assuntos
Bactérias/citologia , Bactérias/metabolismo , Cupriavidus necator/citologia , Halomonas/citologia , Osmose , Poli-Hidroxialcanoatos/farmacologia , Bactérias/efeitos dos fármacos , Cupriavidus necator/efeitos dos fármacos , Cupriavidus necator/metabolismo , Cupriavidus necator/ultraestrutura , Halomonas/efeitos dos fármacos , Halomonas/metabolismo , Halomonas/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Temperatura , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA