Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
CA Cancer J Clin ; 67(5): 378-397, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28763097

RESUMO

Answer questions and earn CME/CNE Recent decades have seen an unprecedented rise in obesity, and the health impact thereof is increasingly evident. In 2014, worldwide, more than 1.9 billion adults were overweight (body mass index [BMI], 25-29.9 kg/m2 ), and of these, over 600 million were obese (BMI ≥30 kg/m2 ). Although the association between obesity and the risk of diabetes and coronary artery disease is widely known, the impact of obesity on cancer incidence, morbidity, and mortality is not fully appreciated. Obesity is associated both with a higher risk of developing breast cancer, particularly in postmenopausal women, and with worse disease outcome for women of all ages. The first part of this review summarizes the relationships between obesity and breast cancer development and outcomes in premenopausal and postmenopausal women and in those with hormone receptor-positive and -negative disease. The second part of this review addresses hypothesized molecular mechanistic insights that may underlie the effects of obesity to increase local and circulating proinflammatory cytokines, promote tumor angiogenesis and stimulate the most malignant cancer stem cell population to drive cancer growth, invasion, and metastasis. Finally, a review of observational studies demonstrates that increased physical activity is associated with lower breast cancer risk and better outcomes. The effects of recent lifestyle interventions to decrease sex steroids, insulin/insulin-like growth factor-1 pathway activation, and inflammatory biomarkers associated with worse breast cancer outcomes in obesity also are discussed. Although many observational studies indicate that exercise with weight loss is associated with improved breast cancer outcome, further prospective studies are needed to determine whether weight reduction will lead to improved patient outcomes. It is hoped that several ongoing lifestyle intervention trials, which are reviewed herein, will support the systematic incorporation of weight loss intervention strategies into care for patients with breast cancer. CA Cancer J Clin 2017;67:378-397. © 2017 American Cancer Society.


Assuntos
Neoplasias da Mama/epidemiologia , Obesidade/epidemiologia , Tecido Adiposo/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Comorbidade , Exercício Físico , Feminino , Humanos , Estilo de Vida , Obesidade/metabolismo , Pós-Menopausa , Pré-Menopausa , Fatores de Risco , Aumento de Peso , Redução de Peso
2.
Proc Natl Acad Sci U S A ; 116(14): 7005-7014, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877256

RESUMO

p27 shifts from CDK inhibitor to oncogene when phosphorylated by PI3K effector kinases. Here, we show that p27 is a cJun coregulator, whose assembly and chromatin association is governed by p27 phosphorylation. In breast and bladder cancer cells with high p27pT157pT198 or expressing a CDK-binding defective p27pT157pT198 phosphomimetic (p27CK-DD), cJun is activated and interacts with p27, and p27/cJun complexes localize to the nucleus. p27/cJun up-regulates TGFB2 to drive metastasis in vivo. Global analysis of p27 and cJun chromatin binding and gene expression shows that cJun recruitment to many target genes is p27 dependent, increased by p27 phosphorylation, and activates programs of epithelial-mesenchymal transformation and metastasis. Finally, human breast cancers with high p27pT157 differentially express p27/cJun-regulated genes of prognostic relevance, supporting the biological significance of the work.


Assuntos
Movimento Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética
3.
Breast Cancer Res Treat ; 156(2): 405-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26993130

RESUMO

Erratum to: Breast Cancer Res Treat (2013),138:369­381,DOI 10.1007/s10549-012-2389-6. In the original publication of the article, the Fig. 4c and d were published erroneously. The revised Fig. 4 is given in this erratum.

4.
Mol Cell ; 30(6): 701-11, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18570873

RESUMO

The cell-cycle effects of mTORC1 are not fully understood. We provide evidence that mTOR-raptor phosphorylates SGK1 to modulate p27 function. Cellular mTOR activation, by refeeding of amino acid-deprived cells or by TSC2 shRNA, activated SGK1 and p27 phosphorylation at T157, and both were inhibited by short-term rapamycin treatment and by SGK1 shRNA. mTOR overexpression activated both Akt and SGK1, causing TGF-beta resistance through impaired nuclear import and cytoplasmic accumulation of p27. Rapamycin or raptor shRNA impaired mTOR-driven p70 and SGK1 activation, but not that of Akt, and decreased cytoplasmic p27. mTOR/raptor/SGK1 complexes were detected in cells. mTOR phosphorylated SGK1, but not SGK1-S422A, in vitro. SGK1 phosphorylated p27 in vitro. These data implicate SGK1 as an mTORC1 (mTOR-raptor) substrate. mTOR may promote G1 progression in part through SGK1 activation and deregulate the cell cycle in cancers through both Akt- and SGK-mediated p27 T157 phosphorylation and cytoplasmic p27 mislocalization.


Assuntos
Ciclo Celular/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ativação Enzimática , Homeostase , Humanos , Cinética , Melanoma , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/metabolismo , Serina-Treonina Quinases TOR , Transfecção
5.
Annu Rev Med ; 64: 45-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23121183

RESUMO

Obesity is a problem of epidemic proportions in many developed nations. Increased body mass index and obesity are associated with a significantly worse outcome for many cancers. Breast cancer risk in the postmenopausal setting and poor disease outcome for all patients is significantly augmented in overweight and obese individuals. The expansion of fat tissue involves a complex interaction of endocrine factors known as adipokines and cytokines. High cytokine levels in primary breast cancers and in the circulation of affected patients have been associated with poor outcome. This review summarizes the how cytokine production in obese adipose tissue creates a chronic inflammatory microenvironment that favors tumor cell motility, invasion, and epithelial-mesenchymal transition to enhance the metastatic potential of tumor cells. Many of the cytokines associated with a proinflammatory state are not only upregulated in obese adipose tissue but may also stimulate the self-renewal of cancer stem cells. Thus, enhanced cytokine production in obese adipose tissue may serve both as a chemoattractant for invading cancers and to augment their malignant potential. These new mechanistic insights suggest that the current obesity epidemic will presage a significant increase in cancer incidence, morbidity, and mortality in the next few decades.


Assuntos
Citocinas/metabolismo , Neoplasias , Obesidade , Índice de Massa Corporal , Progressão da Doença , Saúde Global , Humanos , Incidência , Neoplasias/complicações , Neoplasias/epidemiologia , Neoplasias/metabolismo , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/metabolismo , Fatores de Risco
6.
Breast Cancer Res Treat ; 144(3): 503-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24567196

RESUMO

Our goal was to establish primary cultures from dissociation of breast tumors in order to provide cellular models that may better recapitulate breast cancer pathogenesis and the metastatic process. Here, we report the characterization of six cellular models derived from the dissociation of primary breast tumor specimens, referred to as "dissociated tumor (DT) cells." In vitro, DT cells were characterized by proliferation assays, colony formation assays, protein, and gene expression profiling, including PAM50 predictor analysis. In vivo, tumorigenic and metastatic potential of DT cultures was assessed in NOD/SCID and NSG mice. These cellular models differ from recently developed patient-derived xenograft models in that they can be used for both in vitro and in vivo studies. PAM50 predictor analysis showed DT cultures similar to their paired primary tumor and as belonging to the basal and Her2-enriched subtypes. In vivo, three DT cultures are tumorigenic in NOD/SCID and NSG mice, and one of these is metastatic to lymph nodes and lung after orthotopic inoculation into the mammary fat pad, without excision of the primary tumor. Three DT cultures comprised of cancer-associated fibroblasts (CAFs) were isolated from luminal A, Her2-enriched, and basal primary tumors. Among the DT cells are those that are tumorigenic and metastatic in immunosuppressed mice, offering novel cellular models of ER-negative breast cancer subtypes. A group of CAFs provide tumor subtype-specific components of the tumor microenvironment (TME). Altogether, these DT cultures provide closer-to-primary cellular models for the study of breast cancer pathogenesis, metastasis, and TME.


Assuntos
Neoplasias da Mama/patologia , Cultura Primária de Células , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Metástase Neoplásica , Cultura Primária de Células/métodos , Carga Tumoral , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
7.
Nat Cell Biol ; 9(2): 218-24, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17237771

RESUMO

Nutrients and bioenergetics are prerequisites for proliferation and survival of mammalian cells. We present evidence that the cyclin-dependent kinase inhibitor p27(Kip1), is phosphorylated at Thr 198 downstream of the Peutz-Jeghers syndrome protein-AMP-activated protein kinase (LKB1-AMPK) energy-sensing pathway, thereby increasing p27 stability and directly linking sensing of nutrient concentration and bioenergetics to cell-cycle progression. Ectopic expression of wild-type and phosphomimetic Thr 198 to Asp 198 (T198D), but not unstable Thr 198 to Ala 198 (p27(T198A)) is sufficient to induce autophagy. Under stress conditions that activate the LKB1-AMPK pathway with subsequent induction of autophagy, p27 knockdown results in apoptosis. Thus LKB1-AMPK pathway-dependent phosphorylation of p27 at Thr 198 stabilizes p27 and permits cells to survive growth factor withdrawal and metabolic stress through autophagy. This may contribute to tumour-cell survival under conditions of growth factor deprivation, disrupted nutrient and energy metabolism, or during stress of chemotherapy.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Metabolismo Energético , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Linhagem Celular Tumoral , Humanos , Fosforilação , Transdução de Sinais/fisiologia
8.
Front Nutr ; 11: 1301427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660060

RESUMO

Background: High glycemic variability (GV) is a biomarker of cancer risk, even in the absence of diabetes. The emerging concept of chrononutrition suggests that modifying meal timing can favorably impact metabolic risk factors linked to diet-related chronic disease, including breast cancer. Here, we examined the potential of eating when glucose levels are near personalized fasting thresholds (low-glucose eating, LGE), a novel form of timed-eating, to reduce GV in women without diabetes, who are at risk for postmenopausal breast cancer. Methods: In this exploratory analysis of our 16-week weight loss randomized controlled trial, we included 17 non-Hispanic, white, postmenopausal women (average age = 60.7 ± 5.8 years, BMI = 34.5 ± 6.1 kg/m2, HbA1c = 5.7 ± 0.3%). Participants were those who, as part of the parent study, provided 3-7 days of blinded, continuous glucose monitoring data and image-assisted, timestamped food records at weeks 0 and 16. Pearson's correlation and multivariate regression were used to assess associations between LGE and GV, controlling for concurrent weight changes. Results: Increases in LGE were associated with multiple unfavorable measures of GV including reductions in CGM glucose mean, CONGA, LI, J-Index, HBGI, ADDR, and time spent in a severe GV pattern (r = -0.81 to -0.49; ps < 0.044) and with increases in favorable measures of GV including M-value and LBGI (r = 0.59, 0.62; ps < 0.013). These associations remained significant after adjusting for weight changes. Conclusion: Low-glucose eating is associated with improvements in glycemic variability, independent of concurrent weight reductions, suggesting it may be beneficial for GV-related disease prevention. Further research in a larger, more diverse sample with poor metabolic health is warranted.Clinical trial registration: ClinicalTrials.gov, NCT03546972.

9.
Nat Commun ; 15(1): 5152, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886396

RESUMO

In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.


Assuntos
Neoplasias da Mama , Inibidor de Quinase Dependente de Ciclina p27 , Hiperplasia , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Feminino , Fosforilação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hiperplasia/metabolismo , Camundongos , Regulação Neoplásica da Expressão Gênica , Autorrenovação Celular/genética , Linhagem Celular Tumoral , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/citologia , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética
10.
Breast Cancer Res Treat ; 138(2): 369-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23430223

RESUMO

Oncogenic PI3K/mTOR activation is frequently observed in human cancers and activates cell motility via p27 phosphorylations at T157 and T198. Here we explored the potential for a novel PI3K/mTOR inhibitor to inhibit tumor invasion and metastasis. An MDA-MB-231 breast cancer line variant, MDA-MB-231-1833, with high metastatic bone tropism, was treated with a novel catalytic PI3K/mTOR inhibitor, PF-04691502, at nM doses that did not impair proliferation. Effects on tumor cell motility, invasion, p27 phosphorylation, localization, and bone metastatic outgrowth were assayed. MDA-MB-231-1833 showed increased PI3K/mTOR activation, high levels of cytoplasmic p27pT157pT198 and increased cell motility and invasion in vitro versus parental. PF-04691502 treatment, at a dose that did not affect proliferation, reduced total and cytoplasmic p27, decreased p27pT157pT198 and restored cell motility and invasion to levels seen in MDA-MB-231. p27 knockdown in MDA-MB-231-1833 phenocopied PI3K/mTOR inhibition, whilst overexpression of the phosphomimetic mutant p27T157DT198D caused resistance to the anti-invasive effects of PF-04691502. Pre-treatment of MDA-MB-231-1833 with PF-04691502 significantly impaired metastatic tumor formation in vivo, despite lack of antiproliferative effects in culture and little effect on primary orthotopic tumor growth. A further link between cytoplasmic p27 and metastasis was provided by a study of primary human breast cancers which showed cytoplasmic p27 is associated with increased lymph nodal metastasis and reduced survival. Novel PI3K/mTOR inhibitors may oppose tumor metastasis independent of their growth inhibitory effects, providing a rationale for clinical investigation of PI3K/mTOR inhibitors in settings to prevent micrometastasis. In primary human breast cancers, cytoplasmic p27 is associated with worse outcomes and increased nodal metastasis, and may prove useful as a marker of both PI3K/mTOR activation and PI3K/mTOR inhibitor efficacy.


Assuntos
Neoplasias Ósseas/prevenção & controle , Neoplasias da Mama/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Piridonas/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/secundário , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Citoplasma/metabolismo , Intervalo Livre de Doença , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Invasividade Neoplásica , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 106(23): 9268-73, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19470470

RESUMO

p90 ribosomal S6 kinase (RSK1) is an effector of both Ras/MEK/MAPK and PI3K/PDK1 pathways. We present evidence that RSK1 drives p27 phosphorylation at T198 to increase RhoA-p27 binding and cell motility. RSK1 activation and p27pT198 both increase in early G(1). As for many kinase-substrate pairs, cellular RSK1 coprecipitates with p27. siRNA to RSK1 and RSK1 inhibition both rapidly reduce cellular p27pT198. RSK1 overexpression increases p27pT198, p27-cyclin D1-Cdk4 complexes, and p27 stability. Moreover, RSK1 transfectants show mislocalization of p27 to cytoplasm, increased motility, and reduced RhoA-GTP, phospho-cofilin, and actin stress fibers, all of which were reversed by shRNA to p27. Phosphorylation by RSK1 increased p27pT198 binding to RhoA in vitro, whereas p27T157A/T198A bound poorly to RhoA compared with WTp27 in cells. Coprecipitation of cellular p27-RhoA was increased in cells with constitutive PI3K activation and increased in early G(1). Thus T198 phosphorylation not only stabilizes p27 and mislocalizes p27 to the cytoplasm but also promotes RhoA-p27 interaction and RhoA pathway inhibition. These data link p27 phosphorylation at T198 and cell motility. As for other PI3K effectors, RSK1 phosphorylates p27 at T198. Because RSK1 is also activated by MAPK, the increased cell motility and metastatic potential of cancer cells with PI3K and/or MAPK pathway activation may result in part from RSK1 activation, leading to accumulation of p27T198 in the cytoplasm, p27:RhoA binding, inhibition of RhoA/Rock pathway activation, and loss of actomyosin stability.


Assuntos
Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27 , Citoplasma/metabolismo , Fase G1 , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Transdução de Sinais
12.
Breast Cancer Res Treat ; 128(1): 69-78, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20669046

RESUMO

Antiestrogen therapies arrest susceptible estrogen receptor (ER)-positive breast cancers by increasing p27. Since Src phosphorylates p27 to promote p27 proteolysis, Src activation observed in up to 40% of ER-positive cancers may contribute to antiestrogen resistance. In this article, we show that treatment with the Src-inhibitor saracatinib (AZD0530) together with ER-blocking drugs increased breast cancer cell cycle arrest via p27. Saracatinib and fulvestrant together more effectively increased p27, reduced Ki67, and impaired MDA-MB-361 xenograft tumor growth in vivo than either of the drugs alone. In contrast, saracatinib monotherapy rapidly gave rise to drug resistance. Since combined ER and Src inhibition delays development of resistance in vivo, these data support further clinical investigation of saracatinib in combination with fulvestrant for women with ER-positive breast cancer. Proteomic analysis revealed striking bypass activation of the mTOR pathway in saracatinib-resistant tumors. mTORC1 activation also arose following long-term culture of ER-positive breast cancer lines in the presence of saracatinib. These data indicate the utility of proteomic analysis of drug-resistant tumors to identify potential means of drug resistance. The use of mTOR kinase inhibitors with saracatinib may subvert drug resistance and prove to be more effective than saracatinib alone.


Assuntos
Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/antagonistas & inibidores , Quinazolinas/farmacologia , Tamoxifeno/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto , Fase G1/efeitos dos fármacos , Humanos , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Nus , Neoplasias Hormônio-Dependentes , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Med ; 8(10): 1153-60, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12244302

RESUMO

Mechanisms linking mitogenic and growth inhibitory cytokine signaling and the cell cycle have not been fully elucidated in either cancer or in normal cells. Here we show that activation of protein kinase B (PKB)/Akt, contributes to resistance to antiproliferative signals and breast cancer progression in part by impairing the nuclear import and action of p27. Akt transfection caused cytoplasmic p27 accumulation and resistance to cytokine-mediated G1 arrest. The nuclear localization signal of p27 contains an Akt consensus site at threonine 157, and p27 phosphorylation by Akt impaired its nuclear import in vitro. Akt phosphorylated wild-type p27 but not p27T157A. In cells transfected with constitutively active Akt(T308DS473D)(PKB(DD)), p27WT mislocalized to the cytoplasm, but p27T157A was nuclear. In cells with activated Akt, p27WT failed to cause G1 arrest, while the antiproliferative effect of p27T157A was not impaired. Cytoplasmic p27 was seen in 41% (52 of 128) of primary human breast cancers in conjunction with Akt activation and was correlated with a poor patient prognosis. Thus, we show a novel mechanism whereby Akt impairs p27 function that is associated with an aggressive phenotype in human breast cancer.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Quinases relacionadas a CDC2 e CDC28 , Proteínas de Ciclo Celular/metabolismo , Fase G1/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p27 , Quinases Ciclina-Dependentes/metabolismo , Inibidores Enzimáticos/metabolismo , Feminino , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Taxa de Sobrevida , Treonina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/genética
14.
J Clin Invest ; 117(8): 2205-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17627304

RESUMO

Estrogen drives both transcriptional activation and proteolysis of estrogen receptor alpha (ER alpha; encoded by ESR1). Here we observed variable and overlapping ESR1 mRNA levels in 200 ER alpha-negative and 50 ER alpha-positive primary breast cancers examined, which suggests important posttranscriptional ER alpha regulation. Our results indicate that Src cooperates with estrogen to activate ER alpha proteolysis. Inducible Src stimulated ligand-activated ER alpha transcriptional activity and reduced ER alpha t(1/2). Src and ER alpha levels were inversely correlated in primary breast cancers. ER alpha-negative primary breast cancers and cell lines showed increased Src levels and/or activity compared with ER alpha-positive cancers and cells. ER alpha t(1/2) was reduced in ER alpha-negative cell lines. In both ER alpha-positive and -negative cell lines, both proteasome and Src inhibitors increased ER alpha levels. Src inhibition impaired ligand-activated ER alpha ubiquitylation and increased ER alpha levels. Src siRNA impaired ligand-activated ER alpha loss in BT-20 cells. Pretreatment with Src increased ER alpha ubiquitylation and degradation in vitro. These findings provide what we believe to be a novel link between Src activation and ER alpha proteolysis and support a model whereby crosstalk between liganded ER alpha and Src drives ER alpha transcriptional activity and targets ER alpha for ubiquitin-dependent proteolysis. Oncogenic Src activation may promote not only proliferation, but also estrogen-activated ER alpha loss in a subset of ER alpha-negative breast cancers, altering prognosis and response to therapy.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Processamento de Proteína Pós-Traducional , Quinases da Família src/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , RNA Interferente Pequeno/farmacologia , Transcrição Gênica/efeitos dos fármacos , Ubiquitina/metabolismo , Quinases da Família src/antagonistas & inibidores
15.
Clin Cancer Res ; 15(10): 3396-405, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19451593

RESUMO

PURPOSE: Antiestrogens are used to treat estrogen receptor (ER)-alpha-positive breast cancers and cause a p27-dependent G(1) arrest. Estrogen-bound ER recruits Src to mediate proteolysis of p27 and drive cell proliferation. Here, we tested the antitumor efficacy of combined Src and aromatase inhibition for ER-positive breast cancer. EXPERIMENTAL DESIGN: Antiproliferative effects of the aromatase inhibitor, anastrozole, and Src inhibitor, AZD0530, alone or in combination were tested in vitro and in vivo on aromatase-transfected MCF-7Arom5 xenografts. Xenografts were analyzed by immunohistochemistry and proteomic analysis to identify potential biomarkers of drug response and resistance. RESULTS: AZD0530 and anastrozole together increased p27 and caused greater G(1) cell cycle arrest than either drug alone. AZD0530 monotherapy initially retarded xenograft growth in vivo, but drug resistance rapidly emerged. Combined anastrozole/AZD0530 reduced drug resistance and showed greater antitumor efficacy in vivo with greater Src and epidermal growth factor receptor inhibition and a greater increase in p27 and reduction of Ki-67 than either drug alone, supporting further evaluation of these putative predictors of response to combined Src/aromatase inhibition in vivo. Anastrozole alone stimulated Src activity both in vitro and in vivo. AZD0530-resistant tumors showed activation of bypass pathways including MEK and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin, raising the possibility that MEK, mammalian target of rapamycin (mTOR), or PI3K inhibitors may augment Src inhibitor efficacy. CONCLUSIONS: These data support clinical investigation of anastrozole-AZD0530 therapy for postmenopausal ER-positive breast cancer. Loss of p27 and increased Ki-67 may predict response and further clinical studies should evaluate for activation of bypass pathways including MEK and PI3K pathways during Src inhibitor therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Anastrozol , Animais , Inibidores da Aromatase/administração & dosagem , Benzodioxóis/administração & dosagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína Tirosina Quinase CSK , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nitrilas/administração & dosagem , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinas/administração & dosagem , Triazóis/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src
16.
STAR Protoc ; 1(3): 100197, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377091

RESUMO

Primary human breast cancers invade surrounding fat and contact adipocytes, inflammatory infiltrates, and fibrous stroma. This tissue niche influences breast tumor progression. Here, we present a protocol to enable the in vitro study of the complex interactions that occur between breast cancer cells and adipose cells. We describe how to obtain different adipose cell populations, including adipose-derived stem cells, immature adipocytes, and mature adipocytes, from human breast fat tissue and detail the application for co-culture assays with breast cancer cells. For complete details on the use and execution of this protocol, please refer to Picon-Ruiz et al. (2016) and Qureshi et al. (2020).


Assuntos
Tecido Adiposo/citologia , Técnicas de Cocultura/métodos , Manejo de Espécimes/métodos , Adipócitos/citologia , Tecido Adiposo/patologia , Mama/patologia , Neoplasias da Mama/patologia , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Células-Tronco/citologia
17.
Cancer Res ; 80(17): 3451-3458, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341036

RESUMO

p27 binds and inhibits cyclin-CDK to arrest the cell cycle. p27 also regulates other processes including cell migration and development independent of its cyclin-dependent kinase (CDK) inhibitory action. p27 is an atypical tumor suppressor-deletion or mutational inactivation of the gene encoding p27, CDKN1B, is rare in human cancers. p27 is rarely fully lost in cancers because it can play both tumor suppressive and oncogenic roles. Until recently, the paradigm was that oncogenic deregulation results from either loss of growth restraint due to excess p27 proteolysis or from an oncogenic gain of function through PI3K-mediated C-terminal p27 phosphorylation, which disrupts the cytoskeleton to increase cell motility and metastasis. In cancers, C-terminal phosphorylation alters p27 protein-protein interactions and shifts p27 from CDK inhibitor to oncogene. Recent data indicate p27 regulates transcription and acts as a transcriptional coregulator of cJun. C-terminal p27 phosphorylation increases p27-cJun recruitment to and action on target genes to drive oncogenic pathways and repress differentiation programs. This review focuses on noncanonical, CDK-independent functions of p27 in migration, invasion, development, and gene expression, with emphasis on how transcriptional regulation by p27 illuminates its actions in cancer. A better understanding of how p27-associated transcriptional complexes are regulated might identify new therapeutic targets at the interface between differentiation and growth control.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Neoplasias/patologia , Animais , Carcinogênese/genética , Movimento Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos , Invasividade Neoplásica/genética , Neoplasias/metabolismo
18.
Sci Adv ; 6(23): eaaz7249, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32548262

RESUMO

RING1B, a core Polycomb repressive complex 1 subunit, is a histone H2A ubiquitin ligase essential for development. RING1B is overexpressed in patients with luminal breast cancer (BC) and recruited to actively transcribed genes and enhancers co-occupied by the estrogen receptor α (ERα). Whether ERα-induced transcriptional programs are mediated by RING1B is not understood. We show that prolonged estrogen administration induces transcriptional output and chromatin landscape fluctuations. RING1B loss impairs full estrogen-mediated gene expression and chromatin accessibility for key BC transcription factors. These effects were mediated, in part, by RING1B enzymatic activity and nucleosome binding functions. RING1B is recruited in a cyclic manner to ERα, FOXA1, and GRHL2 cobound sites and regulates estrogen-induced enhancers and ERα recruitment. Last, ChIP exo revealed multiple binding events of these factors at single-nucleotide resolution, including RING1B occupancy approximately 10 base pairs around ERα bound sites. We propose RING1B as a key regulator of the dynamic, liganded-ERα transcriptional regulatory circuit in luminal BC.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Complexo Repressor Polycomb 1/metabolismo
19.
Cell Metab ; 31(6): 1154-1172.e9, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492394

RESUMO

Many inflammation-associated diseases, including cancers, increase in women after menopause and with obesity. In contrast to anti-inflammatory actions of 17ß-estradiol, we find estrone, which dominates after menopause, is pro-inflammatory. In human mammary adipocytes, cytokine expression increases with obesity, menopause, and cancer. Adipocyte:cancer cell interaction stimulates estrone- and NFκB-dependent pro-inflammatory cytokine upregulation. Estrone- and 17ß-estradiol-driven transcriptomes differ. Estrone:ERα stimulates NFκB-mediated cytokine gene induction; 17ß-estradiol opposes this. In obese mice, estrone increases and 17ß-estradiol relieves inflammation. Estrone drives more rapid ER+ breast cancer growth in vivo. HSD17B14, which converts 17ß-estradiol to estrone, associates with poor ER+ breast cancer outcome. Estrone and HSD17B14 upregulate inflammation, ALDH1 activity, and tumorspheres, while 17ß-estradiol and HSD17B14 knockdown oppose these. Finally, a high intratumor estrone:17ß-estradiol ratio increases tumor-initiating stem cells and ER+ cancer growth in vivo. These findings help explain why postmenopausal ER+ breast cancer increases with obesity, and offer new strategies for prevention and therapy.


Assuntos
Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Pós-Menopausa/metabolismo , Pré-Menopausa/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Mol Endocrinol ; 21(11): 2651-62, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17666587

RESUMO

The estrogen receptor (ER) binds to estrogen-responsive elements (EREs) to activate gene transcription. The best characterized EREs are located in proximal gene promoters, but recent data indicate that only a minority of ER binding sites lie within proximal promoter regions. GREB1 (gene regulated by estrogen in breast cancer 1) is an ER target gene that regulates estrogen-induced proliferation in breast cancer cells. We identified three consensus EREs, located at -21.2, -9.5, and -1.6 kb upstream of the closest GREB1a transcription start site that appear to mediate long-range GREB1 gene activation by ER. All three ERE sites nucleate ER, steroid receptor coactivator-3 (SRC-3), and RNA polymerase II (Pol II) and undergo histone acetylation in response to estradiol. Estrogen-stimulated ER binding at all three EREs was cyclic and synchronous. SRC-3 and Pol II recruitment to all three EREs was activated by estrogen but not tamoxifen. In contrast, estrogen stimulated only Pol II and not ER or SRC-3 recruitment to the GREB1 core promoter regions. Long-range histone acetylation, centered on the three ERE motifs and the GREB1 core promoters, was observed in response to estrogen but not to tamoxifen. These data suggest that estrogen-stimulated GREB1 transcription may involve coordinated ER binding to all three distal consensus ERE motifs. Long-range activation by ER acting at multiple EREs may be more common than previously appreciated.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Motivos de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Ativação Enzimática , Estradiol/metabolismo , Estrogênios/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Dados de Sequência Molecular , Coativador 3 de Receptor Nuclear , Regiões Promotoras Genéticas , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Transativadores/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA