Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7262, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179601

RESUMO

Provided the considerable logistical challenges of anticipatory action and disaster response programs, there is a need for early warning of crop failures at lead times of six to twelve months. But crop yield forecasts at these lead times are virtually nonexistent. By leveraging recent advances in climate forecasting, we demonstrate that global preseason crop yield forecasts are not only possible but are skillful over considerable portions of cropland. Globally, maize and wheat forecasts are skillful at lead times of up to a year ahead of harvest for 15% and 30% of harvested areas, respectively. Forecasts are most skillful in Southeast Africa and Southeast Asia for maize and parts of South and Central Asia, Australia, and Southeast South America for wheat. Wheat forecasts, furthermore, remain skillful at lead times of over 18 months ahead of harvest in some locations. Our results demonstrate that the potential for preseason crop yield forecasts is greater than previously appreciated.


Assuntos
Produtos Agrícolas , Previsões , Triticum , Zea mays , Zea mays/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Previsões/métodos , Agricultura/métodos , Austrália
2.
Sci Total Environ ; 831: 154453, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35346702

RESUMO

Groundwater is an important source of water for people, livestock, and agriculture during drought in the Horn of Africa. In this work, areas of high groundwater use and demand in drought-prone Kenya were identified and forecasted prior to the dry season. Estimates of groundwater use were extended from a sentinel network of 69 in-situ sensored mechanical boreholes to the region with satellite data and a machine learning model. The sensors contributed 756 site-month observations from June 2017 to September 2021 for model building and validation at a density of approximately one sensor per 3700 km2. An ensemble of 19 parameterized algorithms was informed by features including satellite-derived precipitation, surface water availability, vegetation indices, hydrologic land surface modeling, and site characteristics to dichotomize high groundwater pump utilization. Three operational definitions of high demand on groundwater infrastructure were considered: 1) mechanical runtime of pumps greater than a quarter of a day (6+ hr) and daily per capita volume extractions indicative of 2) domestic water needs (35+ L), and 3) intermediate needs including livestock (75+ L). Gridded interpolation of localized groundwater use and demand was provided from 2017 to 2020 and forecasted for the 2021 dry season, June-September 2021. Cross-validated skill for contemporary estimates of daily pump runtime and daily volume extraction to meet domestic and intermediate water needs was 68%, 69%, and 75%, respectively. Forecasts were externally validated with an accuracy of at least 56%, 70%, or 72% for each groundwater use definition. The groundwater maps are accessible to stakeholders including the Kenya National Drought Management Authority (NDMA) and the Famine Early Warning Systems Network (FEWS NET). These maps represent the first operational spatially-explicit sub-seasonal to seasonal (S2S) estimates of groundwater use and demand in the literature. Knowledge of historical and forecasted groundwater use is anticipated to improve decision-making and resource allocation for a range of early warning early action applications.


Assuntos
Secas , Água Subterrânea , Humanos , Quênia , Aprendizado de Máquina , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA