RESUMO
Mitochondria are sensitive to oxidative stress, which can be caused by traffic-related air pollution. Placental mitochondrial DNA (mtDNA) mutations have been previously linked with air pollution. However, the relationship between prenatal air pollution and cord-blood mtDNA mutations has been poorly understood. Therefore, we hypothesized that prenatal particulate matter (PM2.5) and NO2 exposures are associated with cord-blood mtDNA heteroplasmy. As part of the ENVIRONAGE cohort, 200 mother-newborn pairs were recruited. Cord-blood mitochondrial single-nucleotide polymorphisms were identified by whole mitochondrial genome sequencing, and heteroplasmy levels were evaluated based on the variant allele frequency (VAF). Outdoor PM2.5 and NO2 concentrations were determined by a high-resolution spatial-temporal interpolation method based on the maternal residential address. Distributed lag linear models were used to determine sensitive time windows for the association between NO2 exposure and cord-blood mtDNA heteroplasmy. A 5 µg/m3 increment in NO2 was linked with MT-D-Loop16311T>C heteroplasmy from gestational weeks 17-25. MT-CYTB14766C>T was negatively associated with NO2 exposure in mid pregnancy, from weeks 14-17, and positively associated in late pregnancy, from weeks 31-36. No significant associations were observed with prenatal PM2.5 exposure. This is the first study to show that prenatal NO2 exposure is associated with cord-blood mitochondrial mutations and suggests two critical windows of exposure in mid-to-late pregnancy.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Recém-Nascido , Humanos , Gravidez , Feminino , Poluentes Atmosféricos/análise , Placenta/química , Dióxido de Nitrogênio , Heteroplasmia , Exposição Materna , Poluição do Ar/análise , Material Particulado/análise , Mitocôndrias/genética , Mitocôndrias/química , DNA Mitocondrial/genética , DNA Mitocondrial/farmacologia , Exposição AmbientalRESUMO
Many species-rich ecological communities emerge from adaptive radiation events. Yet the effects of adaptive radiation on community assembly remain poorly understood. Here, we explore the well-documented radiations of African cichlid fishes and their interactions with the flatworm gill parasites Cichlidogyrus spp., including 10,529 reported infections and 477 different host-parasite combinations collected through a survey of peer-reviewed literature. We assess how evolutionary, ecological, and morphological parameters determine host-parasite meta-communities affected by adaptive radiation events through network metrics, host repertoire measures, and network link prediction. The hosts' evolutionary history mostly determined host repertoires of the parasites. Ecological and evolutionary parameters predicted host-parasite interactions. Generally, ecological opportunity and fitting have shaped cichlid-Cichlidogyrus meta-communities suggesting an invasive potential for hosts used in aquaculture. Meta-communities affected by adaptive radiations are increasingly specialised with higher environmental stability. These trends should be verified across other systems to infer generalities in the evolution of species-rich host-parasite networks.
Assuntos
Ciclídeos , Substâncias Explosivas , Parasitos , Platelmintos , Trematódeos , Animais , Filogenia , Platelmintos/anatomia & histologiaRESUMO
Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component ß-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.
Assuntos
Planárias , Animais , Dano ao DNA/genética , Cabeça , Mediterranea , Planárias/genética , Planárias/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismoRESUMO
During colonial times, Nile tilapia Oreochromis niloticus (Linnaeus, 1758) was introduced into non-native parts of the Congo Basin (Democratic Republic of the Congo, DRC) for the first time. Currently, it is the most farmed cichlid in the DRC, and is present throughout the Congo Basin. Although Nile tilapia has been reported as an invasive species, documentation of historical introductions into this basin and its consequences are scant. Here, we study the genetic consequences of these introductions by genotyping 213 Nile tilapia from native and introduced regions, focusing on the Congo Basin. Additionally, 48 specimens from 16 other tilapia species were included to test for hybridization. Using RAD sequencing (27,611 single nucleotide polymorphisms), we discovered genetic admixture with other tilapia species in several morphologically identified Nile tilapia from the Congo Basin, reflecting their ability to interbreed and the potential threat they pose to the genetic integrity of native tilapias. Nile tilapia populations from the Upper Congo and those from the Middle-Lower Congo are strongly differentiated. The former show genetic similarity to Nile tilapia from the White Nile, while specimens from the Benue Basin and Lake Kariba are similar to Nile tilapia from the Middle-Lower Congo, suggesting independent introductions using different sources. We conclude that the presence of Nile tilapia in the Congo Basin results from independent introductions, reflecting the dynamic aquaculture history, and that their introduction probably leads to genetic interactions with native tilapias, which could lower their fitness. We therefore urge avoiding further introductions of Nile tilapia in non-native regions and to use native tilapias in future aquaculture efforts.
Assuntos
Ciclídeos , Animais , Aquicultura , Ciclídeos/genética , República Democrática do Congo , Espécies Introduzidas , MetagenômicaRESUMO
A substantial portion of biodiversity has evolved through adaptive radiation. However, the effects of explosive speciation on species interactions remain poorly understood. Metazoan parasites infecting radiating host lineages could improve our knowledge because of their intimate host relationships. Yet limited molecular, phenotypic and ecological data discourage multivariate analyses of evolutionary patterns and encourage the use of discrete characters. Here, we assemble new molecular, morphological and host range data widely inferred from a species-rich lineage of parasites (Cichlidogyrus, Platyhelminthes: Monogenea) infecting cichlid fishes to address data scarcity. We infer a multimarker (28S/18S rDNA, ITS1, COI mtDNA) phylogeny of 58 of 137 species and characterize major lineages through synapomorphies inferred from mapping morphological characters. We predict the phylogenetic position of species without DNA data through shared character states, a morphological phylogenetic analysis, and a classification analysis with support vector machines. Based on these predictions and a cluster analysis, we assess the systematic informativeness of continuous characters, search for continuous equivalents for discrete characters, and suggest new characters for morphological traits not analysed to date. We also model the attachment/reproductive organ and host range evolution using the data for 136 of 137 described species and multivariate phylogenetic comparative methods (PCMs). We show that discrete characters not only can mask phylogenetic signals, but also are key for characterizing species groups. Regarding the attachment organ morphology, a divergent evolutionary regime for at least one lineage was detected and a limited morphological variation indicates host and environmental parameters affecting its evolution. However, moderate success in predicting phylogenetic positions, and a low systematic informativeness and high multicollinearity of morphological characters call for a revaluation of characters included in species characterizations.
Assuntos
Ciclídeos , Platelmintos , Trematódeos , Animais , Ciclídeos/genética , DNA Ribossômico/genética , Filogenia , Platelmintos/genéticaRESUMO
BACKGROUND: Mitochondria play an important role in the energy metabolism and are susceptible to environmental pollution. Prenatal air pollution exposure has been linked with childhood obesity. Placental mtDNA mutations have been associated with prenatal particulate matter exposure and MT-ND4L10550A>G heteroplasmy has been associated with BMI in adults. Therefore, we hypothesized that in utero PM2.5 exposure is associated with cord blood MT-ND4L10550A>G heteroplasmy and early life growth. In addition, the role of cord blood MT-ND4L10550A>G heteroplasmy in overweight during early childhood is investigated. METHODS: This study included 386 mother-newborn pairs. Outdoor PM2.5 concentrations were determined at the maternal residential address. Cord blood MT-ND4L10550A>G heteroplasmy was determined using Droplet Digital PCR. Associations were explored using logistic regression models and distributed lag linear models. Mediation analysis was performed to quantify the effects of prenatal PM2.5 exposure on childhood overweight mediated by cord blood MT-ND4L10550A>G heteroplasmy. RESULTS: Prenatal PM2.5 exposure was positively associated with childhood overweight during the whole pregnancy (OR = 2.33; 95% CI: 1.20 to 4.51; p = 0.01), which was mainly driven by the second trimester. In addition, prenatal PM2.5 exposure was associated with cord blood MT-ND4L10550A>G heteroplasmy from gestational week 9 - 13. The largest effect was observed in week 10, where a 5 µg/m3 increment in PM2.5 was linked with cord blood MT-ND4L10550A>G heteroplasmy (OR = 0.93; 95% CI: 0.87 to 0.99). Cord blood MT-ND4L10550A>G heteroplasmy was also linked with childhood overweight (OR = 3.04; 95% CI: 1.15 to 7.50; p = 0.02). The effect of prenatal PM2.5 exposure on childhood overweight was mainly direct (total effect OR = 1.18; 95% CI: 0.99 to 1.36; natural direct effect OR = 1.20; 95% CI: 1.01 to 1.36)) and was not mediated by cord blood MT-ND4L10550A>G heteroplasmy. CONCLUSIONS: Cord blood MT-ND4L10550A>G heteroplasmy was linked with childhood overweight. In addition, in utero exposure to PM2.5 during the first trimester of pregnancy was associated with cord blood MT-ND4L10550A>G heteroplasmy in newborns. Our analysis did not reveal any mediation of cord blood MT-ND4L10550A>G heteroplasmy in the association between PM2.5 exposure and childhood overweight.
Assuntos
Material Particulado , Obesidade Infantil , Adulto , Criança , Pré-Escolar , DNA Mitocondrial , Feminino , Heteroplasmia , Humanos , Recém-Nascido , Mitocôndrias/química , Sobrepeso/epidemiologia , Sobrepeso/genética , Material Particulado/efeitos adversos , Material Particulado/análise , Obesidade Infantil/epidemiologia , Obesidade Infantil/genética , Placenta/química , GravidezRESUMO
The importance of nerve-derived signalling for correct regeneration has been the topic of research for more than a hundred years, but we are just beginning to identify the underlying molecular pathways of this process. Within the current review, we attempt to provide an extensive overview of the neural influences during early and late phases of both vertebrate and invertebrate regeneration. In general, denervation impairs limb regeneration, but the presence of nerves is not essential for the regeneration of aneurogenic extremities. This observation led to the "neurotrophic factor(s) hypothesis", which states that certain trophic factors produced by the nerves are necessary for proper regeneration. Possible neuron-derived factors which regulate regeneration as well as the denervation-affected processes are discussed.
Assuntos
Neurônios/metabolismo , Regeneração/fisiologia , Transdução de Sinais , Animais , Invertebrados/fisiologia , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Vertebrados/fisiologiaRESUMO
Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data.
Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica/normas , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos , IncertezaRESUMO
Stem cells or undifferentiated cells can cope more easily with external stresses. To evaluate the impact of toxic compounds on stem cell dynamics in vivo, in relation to other biological responses, we use the carcinogenic element cadmium and the regenerating model organism Macrostomum lignano. Through both BrdU and anti-histone H3 immunostainings, cadmium-induced effects were investigated at different stages of the stem cell cycle. A 24-h exposure to 100 and 250 µM CdCl2 significantly decreased the number of stem cells (neoblasts) in mitosis, whereas the number of cells in the S phase remained unchanged. After this short-term exposure, the ultrastructure of the neoblasts was minimally affected in contrast to the epidermal tissues. These results were supported by gene expression data: transcripts of cdc2 and pig3 were significantly upregulated during all treatments. Both genes are involved in the cell cycle progression and are transcribed in the gonadal region, where stem cells are highly represented. Based on a substantial increase in gene expression of heat shock proteins (HSP) and their high activity in the gonadal region, we hypothesize that these proteins are key players in the protection of stem cells against external stresses. Apart from the strong HSP induction, other protective processes including cell division, apoptosis and anti-oxidative defence, were also activated. We, therefore, conclude that the protection of stem cells against external stressors may be based on the interplay between stem cell maintenance, i.e. repair and recovery through division, on one hand and apoptosis on the other hand. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1217-1228, 2016.
Assuntos
Cloreto de Cádmio/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/ultraestrutura , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Hibridização In Situ , Microscopia Eletrônica , Mitose/efeitos dos fármacos , Platelmintos/citologia , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fase S , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
Cadmium (Cd(2+)) induces oxidative stress that ultimately defines cell fate and pathology. Mitochondria are the main energy-producing organelles in mammalian cells, but they also have a central role in formation of reactive oxygen species, cell injury, and death signaling. As the kidney is the major target in Cd(2+) toxicity, the roles of oxidative signature and mitochondrial function and biogenesis in Cd(2+)-related stress outcomes were investigated in vitro in cultured rat kidney proximal tubule cells (PTCs) (WKPT-0293 Cl.2) for acute Cd(2+) toxicity (1-30 µM, 24 h) and in vivo in Fischer 344 rats for sub-chronic Cd(2+) toxicity (1 mg/kg CdCl2 subcutaneously, 13 days). Whereas 30 µM Cd(2+) caused ~50 % decrease in cell viability, apoptosis peaked at 10 µM Cd(2+) in PTCs. A steep, dose-dependent decline in reduced glutathione (GSH) content occurred after acute exposure and an increase of the oxidized glutathione (GSSG)/GSH ratio. Quantitative PCR analyses evidenced increased antioxidative enzymes (Sod1, Gclc, Gclm), proapoptotic Bax, metallothioneins 1A/2A, and decreased antiapoptotic proteins (Bcl-xL, Bcl-w). The positive regulator of mitochondrial biogenesis Pparγ and mitochondrial DNA was increased, and cellular ATP was unaffected with Cd(2+) (1-10 µM). In vivo, active caspase-3, and hence apoptosis, was detected by FLIVO injection in the kidney cortex of Cd(2+)-treated rats together with an increase in Bax mRNA. However, antiapoptotic genes (Bcl-2, Bcl-xL, Bcl-w) were also upregulated. Both GSSG and GSH increased with chronic Cd(2+) exposure with no change in GSSG/GSH ratio and augmented expression of antioxidative enzymes (Gpx4, Prdx2). Mitochondrial DNA, mitofusin 2, and Pparα were increased indicating enhanced mitochondrial biogenesis and fusion. Hence, these results demonstrate a clear involvement of higher mitochondria copy numbers or mass and mitochondrial function in acute defense against oxidative stress induced by Cd(2+) in renal PTCs as well as in adaptive processes associated with chronic renal Cd(2+) toxicity.
Assuntos
Cloreto de Cádmio/toxicidade , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cloreto de Cádmio/administração & dosagem , Caspase 3/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismoRESUMO
To investigate hydrophobic test compounds in toxicological studies, solvents like dimethylsulfoxide (DMSO) are inevitable. However, using these solvents, the interpretation of test compound-induced responses can be biased. DMSO concentration guidelines are available, but are mostly based on acute exposures involving one specific toxicity endpoint. Hence, to avoid solvent-toxicant interference, we use multiple chronic test endpoints for additional interpretation of DMSO concentrations and propose a statistical model to assess possible synergistic, antagonistic or additive effects of test compounds and their solvents. In this study, the effects of both short- (1 day) and long-term (2 weeks) exposures to low DMSO concentrations (up to 1000 µl l(-1) ) were studied in the planarian Schmidtea mediterranea. We measured different biological levels in both fully developed and developing animals. In a long-term exposure set-up, a concentration of 500 µl l(-1) DMSO interfered with processes on different biological levels, e.g. behaviour, stem cell proliferation and gene expression profiles. After short exposure times, 500 µl l(-1) DMSO only affected motility, whereas the most significant changes on different parameters were observed at a concentration of 1000 µl l(-1) DMSO. As small sensitivity differences exist between biological levels and developmental stages, we advise the use of this solvent in concentrations below 500 µl l(-1) in this organism. In the second part of our study, we propose a statistical approach to account for solvent-toxicant interactions and discuss full-scale solvent toxicity studies. In conclusion, we reassessed DMSO concentration limits for different experimental endpoints in the planarian S. mediterranea.
Assuntos
Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dimetil Sulfóxido/toxicidade , Planárias/efeitos dos fármacos , Solventes/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Interpretação Estatística de Dados , Dimetil Sulfóxido/química , Relação Dose-Resposta a Droga , Interações Hidrofóbicas e Hidrofílicas , Planárias/citologia , Planárias/genética , Solventes/química , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Testes de ToxicidadeRESUMO
The hypothesis that mitogen-activated protein kinase (MAPK) signalling is important in plant defences against metal stress has become accepted in recent years. To test the role of oxidative signal-inducible kinase (OXI1) in metal-induced oxidative signalling, the responses of oxi1 knockout lines to environmentally realistic cadmium (Cd) and copper (Cu) concentrations were compared with those of wild-type plants. A relationship between OXI1 and the activation of lipoxygenases and other initiators of oxylipin production was observed under these stress conditions, suggesting that lipoxygenase-1 may be a downstream component of OXI1 signalling. Metal-specific differences in OXI1 action were observed. For example, OXI1 was required for the up-regulation of antioxidative defences such as catalase in leaves and Fe-superoxide dismutase in roots, following exposure to Cu, processes that may involve the MEKK1-MKK2-WRKY25 cascade. Moreover, the induction of Cu/Zn superoxide dismutases in Cu-exposed leaves was regulated by OXI1 in a manner that involves fluctuations in the expression of miRNA398. These observations contrast markedly with the responses to Cd exposure, which also involves OXI1-independent pathways but rather involves changes in components mediating intracellular communication.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cádmio/metabolismo , Cobre/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Catalase/metabolismo , Sequestradores de Radicais Livres/metabolismo , MicroRNAs/metabolismo , Oxirredução , Superóxido Dismutase/metabolismoRESUMO
Over the years, anthropogenic factors have led to cadmium (Cd) accumulation in the environment causing various health problems in humans. Although Cd is not a Fenton-like metal, it induces oxidative stress in various animal models via indirect mechanisms. The degree of Cd-induced oxidative stress depends on the dose, duration and frequency of Cd exposure. Also the presence or absence of serum in experimental conditions, type of cells and their antioxidant capacity, as well as the speciation of Cd are important determinants. At the cellular level, the Cd-induced oxidative stress either leads to oxidative damage or activates signal transduction pathways to initiate defence responses. This balance is important on how different organ systems respond to Cd stress and ultimately define the pathological outcome. In this review, we highlight the Cd-induced oxidant/antioxidant status as well as the damage versus signalling scenario in relation to Cd toxicity. Emphasis is addressed to Cd-induced pathologies of major target organs, including a section on cell proliferation and carcinogenesis. Furthermore, attention is paid to Cd-induced oxidative stress in undifferentiated stem cells, which can provide information for future therapies in preventing Cd-induced pathologies.
RESUMO
Imaging of living animals allows the study of metabolic processes in relation to cellular structures or larger functional entities. To enable in vivo imaging during long-term time-lapses in planarians, we combined and optimized existing protocols, resulting in an easily reproducible and inexpensive procedure. Immobilization with low-melting-point agarose eliminates the use of anesthetics, avoids interfering with the animal during imaging-functionally or physically-and allows recovering the organisms after the imaging procedure. As an example, we used the immobilization workflow to image the highly dynamic and fast-changing reactive oxygen species (ROS) in living animals. These reactive signaling molecules can only be studied in vivo and mapping their location and dynamics during different physiological conditions is crucial to understand their role in developmental processes and regeneration. In the current protocol, we describe both the immobilization and ROS detection procedure. We used the intensity of the signals together with pharmacological inhibitors to validate the signal specificity and to distinguish it from the autofluorescent nature of the planarian.
Assuntos
Planárias , Animais , Planárias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Diagnóstico por ImagemRESUMO
Currently, we lack crucial knowledge on how the physicochemical properties of particles affect cellular health, resulting in an important gap in our understanding of the human toxicity of microplastics (MPs). Our aim was to evaluate the impact of the size and the shape of MPs on uptake and the intracellular effects in a human epithelial colorectal adenocarcinoma (Caco-2) cell line. Spherical (200 nm and 2 µm) and fibre-/fragment-shaped (8.9 ± 10.1 µm by 1.14 ± 0.97 µm) polystyrene microplastics (PS-MPs) were used to study their uptake and the potential to induce redox and mitochondrial stress responses after 24 h of exposure. We demonstrated the cellular uptake of both spherical and fibre-/fragment-shaped MPs in a size-dependent manner. In response to 2 µm spheres, we observed differential expressions of redox-related genes, including HMOX1, CAT, and GPX1. All PS-MPs decreased the intracellular H2O2 levels, which can be attributed to mitochondrial stress responses, such as increased mitochondrial DNA content, footprint, and morphology. Altogether, we demonstrated uptakes and changes in redox and mitochondrial parameters for all PS-MPs, with the 200 nm spheres showing the most profound effects. This suggests that the induction of defensive responses in Caco-2 cells mainly correlates with the number of particles taken up.
RESUMO
Cholesterol synthesis and transport in oligodendrocytes are essential for optimal myelination and remyelination in pathological conditions such as multiple sclerosis. However, little is known about cholesterol homeostasis in the myelin-forming oligodendrocytes. Liver X receptors (LXRs) are nuclear oxysterol receptors that regulate genes involved in cholesterol homeostasis and may therefore play an important role in de- and remyelination. We investigated whether LXRs regulate cholesterol homeostasis in oligodendrocytes. mRNA expression of genes encoding LXR-α and LXR-ß and their target genes (ABCA1, ABCG1, ABCG4, apoE, and LDLR) was detected in oligodendrocytes derived from both neonatal and adult rats using quantitative real-time PCR. The expression of LXR-ß and several target genes was increased during oligodendrocyte differentiation. We further demonstrated that treatment of primary neonatal rat oligodendrocytes with the synthetic LXR agonist T0901317 induced the expression of several established LXR target genes, including ABCA1, ABCG1, apoE, and LDLR. Treatment of oligodendrocytes with T0901317 resulted in an enhanced cholesterol efflux in the presence of apolipoprotein A-I or high-density lipoprotein particles. These data show that LXRs are involved in regulating cholesterol homeostasis in oligodendrocytes.
Assuntos
Colesterol/metabolismo , Homeostase/fisiologia , Oligodendroglia/metabolismo , Receptores Nucleares Órfãos/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Anticolesterolemiantes/farmacologia , Antígenos , Encéfalo/citologia , Diferenciação Celular/genética , Sobrevivência Celular , Células Cultivadas , Citometria de Fluxo , Fluoresceínas/metabolismo , Regulação da Expressão Gênica/genética , Homeostase/efeitos dos fármacos , Hidrocarbonetos Fluorados/farmacologia , Metabolismo dos Lipídeos/genética , Lipoproteínas HDL/metabolismo , Receptores X do Fígado , Oligodendroglia/efeitos dos fármacos , Receptores Nucleares Órfãos/genética , Proteoglicanas , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sulfonamidas/farmacologia , Fatores de Tempo , Trítio/metabolismoRESUMO
The flatworm species Schmidtea mediterranea and Macrostomum lignano have become new and innovative model organisms in stem cell, regeneration and tissue homeostasis research. Because of their unique stem cell system, (lab) technical advantages and their phylogenetic position within the Metazoa, they are also ideal candidate model organisms for toxicity assays. As stress and biomarker screenings are often performed at the transcriptional level, the aim of this study was to establish a set of reference genes for qPCR experiments for these two model organisms in different stress situations. We examined the transcriptional stability of nine potential reference genes (actb, tubb, ck2, cox4, cys, rpl13, gapdh, gm2ap, plscr1) to assess those that are most stable during altered stress conditions (exposure to carcinogenic metals and salinity stress). The gene expression stability was evaluated by means of geNorm and NormFinder algorithms. Sets of best reference genes in these analyses varied between different stress situations, although gm2ap and actb were stably transcribed during all tested combinations. In order to demonstrate the impact of bad normalisation, the stress-specific gene hsp90 was normalised to different sets of reference genes. In contrast to the normalisation according to GeNorm and NormFinder, normalisation of hsp90 in Macrostomum lignano during cadmium stress did not show a significant difference when normalised to only gapdh. On the other hand an increase of variability was noticed when normalised to all nine tested reference genes together. Testing appropriate reference genes is therefore strongly advisable in every new experimental condition.
Assuntos
Expressão Gênica/efeitos dos fármacos , Genes Essenciais/efeitos dos fármacos , Metais/toxicidade , Platelmintos/genética , Salinidade , Poluentes Químicos da Água/toxicidade , Animais , Cloreto de Cádmio/toxicidade , Cromo/toxicidade , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase/métodos , Cloreto de Sódio/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Testes de ToxicidadeRESUMO
In a polluted environment, metals are present as complex mixtures. As a result, organisms are exposed to different metals at the same time, which affects both metal-specific as well as overall toxicity. Detailed information about the molecular mechanisms underlying the adverse effects of combined exposures remains limited in terms of different life stages. In this study, the freshwater planarian Schmidtea mediterranea was used to investigate developmental and physiological responses associated with a combined exposure to Cu and Cd. In addition, the cellular and molecular mechanisms underlying the provoked adverse effects were studied in different exposure scenarios. Mixed exposure resulted in a decline in survival, diverse non-lethal morphological changes, neuroregenerative impairments, altered behaviour and a limited repair capacity. Underlying to these effects, the cellular redox state was altered in all exposure conditions. In adult animals, this led to DNA damage and corresponding transcriptional changes in cell cycle and DNA repair genes. In regenerating animals, changes in hydrogen peroxide and glutathione contents led to regenerative defects. Overall, our results demonstrate that (1) developing organisms are more susceptible to metal exposures, and (2) the toxicity of an individual metal increases significantly in a mixed exposure scenario. These aspects have to be included in current risk assessment strategies.
Assuntos
Planárias , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Cobre/toxicidade , Dano ao DNA , Metais , Planárias/genética , Poluentes Químicos da Água/toxicidadeRESUMO
Dactylogyridae is one of the most studied families of parasitic flatworms with more than 1000 species and 166 genera described to date including ecto- and endoparasites. Dactylogyrid monogeneans were suggested as model organisms for host-parasite macroevolutionary and biogeographical studies due to the scientific and economic importance of some of their host lineages. Consequently, an array of phylogenetic research into different dactylogyrid lineages has been produced over the past years but the last family-wide study was published 16 years ago. Here, we provide a meta-analysis of the phylogenetic relationships of Dactylogyridae including representatives of all genera with available molecular data (n = 67). First, we investigate the systematic informativeness of morphological characters widely used to diagnose dactylogyrid genera through a parsimony analysis of the characters, character mapping, and phylogenetic comparative methods. Second, we provide an overview of the current state of the systematics of the family and its subfamilies, and summarise potentially poly- and paraphyletic genera. Third, we elaborate on the implications of taxonomic, citation, and confirmation bias in past studies. Fourth, we discuss host range, biogeographical, and freshwater-marine patterns. We found two well-supported macroclades which we assigned to the subfamilies Dactylogyrinae and Ancyrocephalinae. These subfamilies further include 16 well-supported clades with only a few synapomorphies that could be deduced from generic diagnoses in the literature. Furthermore, few morphological characters considered systematically informative at the genus level display a strong phylogenetic signal. However, the parsimony analysis suggests that these characters provide little information on the relationships between genera. We conclude that a strong taxonomic bias and low coverage of DNA sequences and regions limit knowledge on morphological and biogeographical evolutionary patterns that can be inferred from these results. We propose addressing potential citation and confirmation biases through a 'level playing field' multiple sequence alignment as provided by this study.
Assuntos
Trematódeos , Animais , Sequência de Bases , Evolução Biológica , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Trematódeos/genéticaRESUMO
BACKGROUND/AIM: Glyphosate, a broad-spectrum herbicide, and its main metabolite aminomethylphosphonic acid (AMPA) are persistent in the environment. Studies showed associations between glyphosate or AMPA exposure and several adverse cellular processes, including metabolic alterations and oxidative stress. OBJECTIVE: To determine the association between glyphosate and AMPA exposure and biomarkers of biological aging. METHODS: We examined glyphosate and AMPA exposure, mtDNA content and leukocyte telomere length in 181 adults, included in the third cycle of the Flemish Environment and Health Study (FLEHSIII). DNA was isolated from leukocytes and the relative mtDNA content and telomere length were determined using qPCR. Urinary glyphosate and AMPA concentrations were measured by Gas Chromatography-Tandem Mass Spectrometry (GC-MS-MS). We used multiple linear regression models to associate mtDNA content and leukocyte telomere length with glyphosate or AMPA exposure while adjusting for confounding variables. RESULTS: A doubling in urinary AMPA concentration was associated with 5.19% (95% CI: 0.49 to 10.11; p = 0.03) longer leukocyte telomere length, while no association was observed with urinary glyphosate concentration. No association between mtDNA content and urinary glyphosate nor AMPA levels was observed. CONCLUSIONS: This study showed that AMPA exposure may be associated with telomere biology in adults.