Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 19(22): 6441-6, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19818611

RESUMO

A knowledge based approach has been adopted to identify novel NOP receptor agonists with simplified hydrophobes. Substitution of the benzimidazol-2-one piperidine motif with a range of hydrophobic groups and pharmacophore guided bio-isosteric replacement of the benzimidazol-2-one moiety was explored. Compound 51 was found to be a high affinity, potent NOP receptor agonist with reduced affinity for the hERG channel.


Assuntos
Benzimidazóis/química , Antagonistas de Entorpecentes/química , Piperidinas/química , Animais , Cricetinae , Receptores Opioides/metabolismo , Relação Estrutura-Atividade , Receptor de Nociceptina
2.
ACS Infect Dis ; 3(1): 18-33, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-27704782

RESUMO

A potent, noncytotoxic indazole sulfonamide was identified by high-throughput screening of >100,000 synthetic compounds for activity against Mycobacterium tuberculosis (Mtb). This noncytotoxic compound did not directly inhibit cell wall biogenesis but triggered a slow lysis of Mtb cells as measured by release of intracellular green fluorescent protein (GFP). Isolation of resistant mutants followed by whole-genome sequencing showed an unusual gene amplification of a 40 gene region spanning from Rv3371 to Rv3411c and in one case a potential promoter mutation upstream of guaB2 (Rv3411c) encoding inosine monophosphate dehydrogenase (IMPDH). Subsequent biochemical validation confirmed direct inhibition of IMPDH by an uncompetitive mode of inhibition, and growth inhibition could be rescued by supplementation with guanine, a bypass mechanism for the IMPDH pathway. Beads containing immobilized indazole sulfonamides specifically interacted with IMPDH in cell lysates. X-ray crystallography of the IMPDH-IMP-inhibitor complex revealed that the primary interactions of these compounds with IMPDH were direct pi-pi interactions with the IMP substrate. Advanced lead compounds in this series with acceptable pharmacokinetic properties failed to show efficacy in acute or chronic murine models of tuberculosis (TB). Time-kill experiments in vitro suggest that sustained exposure to drug concentrations above the minimum inhibitory concentration (MIC) for 24 h were required for a cidal effect, levels that have been difficult to achieve in vivo. Direct measurement of guanine levels in resected lung tissue from tuberculosis-infected animals and patients revealed 0.5-2 mM concentrations in caseum and normal lung tissue. The high lesional levels of guanine and the slow lytic, growth-rate-dependent effect of IMPDH inhibition pose challenges to developing drugs against this target for use in treating TB.


Assuntos
Antituberculosos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Sulfonamidas/farmacologia , Animais , Desenho de Fármacos , Descoberta de Drogas , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Mutação , Conformação Proteica , Coelhos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacocinética , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA