Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Alzheimers Dement ; 20(4): 2922-2942, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460121

RESUMO

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Neuroglia/patologia , Placa Amiloide/patologia , Humanos
2.
Semin Cell Dev Biol ; 94: 3-10, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30703557

RESUMO

The patterning of cytosolic Ca2+ signals in space and time underlies their ubiquitous ability to specifically regulate numerous cellular processes. Signals mediated by liberation of Ca2+ sequestered in the endoplasmic reticulum (ER) through inositol trisphosphate receptor (IP3R) channels constitute a hierarchy of events; ranging from openings of individual IP3 channels, through the concerted openings of several clustered IP3Rs to generate local Ca2+ puffs, to global Ca2+ waves and oscillations that engulf the entire cell. Here, we review recent progress in elucidating how this hierarchy is shaped by an interplay between the functional gating properties of IP3Rs and their spatial distribution within the cell. We focus in particular on the subset of IP3Rs that are organized in stationary clusters and are endowed with the ability to preferentially liberate Ca2+.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Animais , Humanos
3.
Horm Behav ; 115: 104564, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31421075

RESUMO

Traumatized women are more likely than traumatized men to develop post-traumatic stress disorder (PTSD). Still, the inclusion of females in animal models of PTSD has largely been avoided, likely due to the variable hormone profile of female rodents. Because a valid animal model of PTSD that incorporates females is still needed, we examined the influence of estrous stage and ovarian hormones on the female rat response to a predator-based psychosocial stress model of PTSD. Female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures and daily social instability; control rats were handled daily. Beginning on Day 32, rats underwent physiological or behavioral testing. In Experiment 1, vaginal smears were collected on days of the first and second cat exposures and each day of behavioral testing to determine estrous stage. In Experiments 2 and 3, ovariectomized or sham control rats were exposed to stress or control conditions. Then, they were given behavioral testing (Exp 2), or their hearts were isolated and subjected to ischemia/reperfusion on a Langendorff isolated heart system (Exp 3). Chronic stress increased anxiety-like behavior, irrespective of estrous stage or ovariectomy condition. Ovariectomized females displayed greater startle responses and anxiety-like behavior than sham rats. Stress had no impact on myocardial sensitivity to ischemic injury; however, ovariectomized females exhibited greater ischemia-induced infarction than sham rats. These findings suggest that ovarian hormones may prevent anxiety-like behavior and be cardioprotective in non-stressed controls, but they do not interact with chronic stress to influence the development of PTSD-like sequelae in female rats.


Assuntos
Ansiedade , Comportamento Animal/fisiologia , Ciclo Estral/fisiologia , Ovariectomia , Reflexo de Sobressalto , Transtornos de Estresse Pós-Traumáticos , Estresse Psicológico , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Modelos Animais de Doenças , Ciclo Estral/metabolismo , Feminino , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
4.
Sensors (Basel) ; 18(6)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795035

RESUMO

The aim of structural identification is to provide accurate knowledge of the behaviour of existing structures. In most situations, finite-element models are updated using behaviour measurements and field observations. Error-domain model falsification (EDMF) is a multi-model approach that compares finite-element model predictions with sensor measurements while taking into account epistemic and stochastic uncertainties-including the systematic bias that is inherent in the assumptions behind structural models. Compared with alternative model-updating strategies such as residual minimization and traditional Bayesian methodologies, EDMF is easy-to-use for practising engineers and does not require precise knowledge of values for uncertainty correlations. However, wrong parameter identification and flawed extrapolation may result when undetected outliers occur in the dataset. Moreover, when datasets consist of a limited number of static measurements rather than continuous monitoring data, the existing signal-processing and statistics-based algorithms provide little support for outlier detection. This paper introduces a new model-population methodology for outlier detection that is based on the expected performance of the as-designed sensor network. Thus, suspicious measurements are identified even when few measurements, collected with a range of sensors, are available. The structural identification of a full-scale bridge in Exeter (UK) is used to demonstrate the applicability of the proposed methodology and to compare its performance with existing algorithms. The results show that outliers, capable of compromising EDMF accuracy, are detected. Moreover, a metric that separates the impact of powerful sensors from the effects of measurement outliers have been included in the framework. Finally, the impact of outlier occurrence on parameter identification and model extrapolation (for example, reserve capacity assessment) is evaluated.

5.
Sensors (Basel) ; 17(12)2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240684

RESUMO

Assessing ageing infrastructure is a critical challenge for civil engineers due to the difficulty in the estimation and integration of uncertainties in structural models. Field measurements are increasingly used to improve knowledge of the real behavior of a structure; this activity is called structural identification. Error-domain model falsification (EDMF) is an easy-to-use model-based structural-identification methodology which robustly accommodates systematic uncertainties originating from sources such as boundary conditions, numerical modelling and model fidelity, as well as aleatory uncertainties from sources such as measurement error and material parameter-value estimations. In most practical applications of structural identification, sensors are placed using engineering judgment and experience. However, since sensor placement is fundamental to the success of structural identification, a more rational and systematic method is justified. This study presents a measurement system design methodology to identify the best sensor locations and sensor types using information from static-load tests. More specifically, three static-load tests were studied for the sensor system design using three types of sensors for a performance evaluation of a full-scale bridge in Singapore. Several sensor placement strategies are compared using joint entropy as an information-gain metric. A modified version of the hierarchical algorithm for sensor placement is proposed to take into account mutual information between load tests. It is shown that a carefully-configured measurement strategy that includes multiple sensor types and several load tests maximizes information gain.

6.
Biophys J ; 107(4): 834-45, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25140418

RESUMO

Puffs are local Ca(2+) signals that arise by Ca(2+) liberation from the endoplasmic reticulum through the concerted opening of tightly clustered inositol trisphosphate receptors/channels (IP3Rs). The locations of puff sites observed by Ca(2+) imaging remain static over several minutes, whereas fluorescence recovery after photobleaching (FRAP) experiments employing overexpression of fluorescently tagged IP3Rs have shown that the majority of IP3Rs are freely motile. To address this discrepancy, we applied single-molecule imaging to locate and track type 1 IP3Rs tagged with a photoswitchable fluorescent protein and expressed in COS-7 cells. We found that ∼ 70% of the IP3R1 molecules were freely motile, undergoing random walk motility with an apparent diffusion coefficient of ∼ 0.095 µm s(-1), whereas the remaining molecules were essentially immotile. A fraction of the immotile IP3Rs were organized in clusters, with dimensions (a few hundred nanometers across) comparable to those previously estimated for the IP3R clusters underlying functional puff sites. No short-term (seconds) changes in overall motility or in clustering of immotile IP3Rs were apparent following activation of IP3/Ca(2+) signaling. We conclude that stable clusters of small numbers of immotile IP3Rs may underlie local Ca(2+) release sites, whereas the more numerous motile IP3Rs appear to be functionally silent.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Difusão , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Fosfatos de Inositol/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência
7.
Alcohol Clin Exp Res (Hoboken) ; 48(3): 466-477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225180

RESUMO

BACKGROUND: Fetal alcohol spectrum disorders (FASD), a group of prevalent conditions resulting from prenatal alcohol exposure, affect the maturation of cerebral white matter as first identified with neuroimaging. However, traditional methods are unable to track subtle microstructural alterations to white matter. This preliminary study uses a highly sensitive and clinically translatable magnetic resonance elastography (MRE) protocol to assess brain tissue microstructure through its mechanical properties following an exercise intervention in a rat model of FASD. METHODS: Female rat pups were either alcohol-exposed (AE) via intragastric intubation of alcohol in milk substitute (5.25 g/kg/day) or sham-intubated (SI) on postnatal days (PD) four through nine to model alcohol exposure during the brain growth spurt. On PD 30, half of AE and SI rats were randomly assigned to either a wheel-running or standard cage for 12 days. Magnetic resonance elastography was used to measure whole brain and callosal mechanical properties at the end of the intervention (around PD 42) and at 1 month post-intervention, and findings were validated with histological quantification of oligoglia. RESULTS: Alcohol exposure reduced forebrain stiffness (p = 0.02) in standard-housed rats. The adolescent exercise intervention mitigated this effect, confirming that increased aerobic activity supports proper neurodevelopmental trajectories. Forebrain damping ratio was lowest in standard-housed AE rats (p < 0.01), but this effect was not mitigated by intervention exposure. At 1 month post-intervention, all rats exhibited comparable forebrain stiffness and damping ratio (p > 0.05). Callosal stiffness and damping ratio increased with age. With cessation of exercise, there was a negative rebound effect on the quantity of callosal oligodendrocytes, irrespective of treatment group, which diverged from our MRE results. CONCLUSIONS: This is the first application of MRE to measure the brain's mechanical properties in a rodent model of FASD. MRE successfully captured alcohol-related changes in forebrain stiffness and damping ratio. Additionally, MRE identified an exercise-related increase to forebrain stiffness in AE rats.

8.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048047

RESUMO

A total of 1 in 20 infants born annually are exposed to alcohol prenatally, which disrupts neurodevelopment and results in several disorders categorized under the umbrella term Fetal Alcohol Spectrum Disorders (FASD). Children and adolescents affected by FASD exhibit delayed maturation of cerebral white matter, which contributes to deficits in executive function, visuospatial processing, sensory integration, and interhemispheric communication. Research using animal models of FASD have uncovered that oligoglia proliferation, differentiation, and survival are vulnerable to alcohol teratogenesis in the male brain due in part to the activation of the neuroimmune system during gestation and infancy. A comprehensive investigation of prenatal alcohol exposure on white matter development in the female brain is limited. This study demonstrated that the number of mature oligodendrocytes and the production of myelin basic protein were reduced first in the female corpus callosum following alcohol exposure in a rat model of FASD. Analysis of myelin-related genes confirmed that myelination occurs earlier in the female corpus callosum compared to their counterparts, irrespective of postnatal treatment. Moreover, dysregulated oligodendrocyte number and myelin basic protein production was observed in the male and female FASD brain in adolescence. Targeted interventions that support white matter development in FASD-affected youth are nonexistent. The capacity for an adolescent exercise intervention to upregulate corpus callosum myelination was evaluated: we discovered that volunteer exercise increases the number of mature oligodendrocytes in alcohol-exposed female rats. This study provides critical evidence that oligoglia differentiation is difficult but not impossible to induce in the female FASD brain in adolescence following a behavioral intervention.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Substância Branca , Humanos , Feminino , Masculino , Ratos , Gravidez , Animais , Corpo Caloso , Proteína Básica da Mielina , Encéfalo , Etanol/toxicidade
9.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808633

RESUMO

Background: Fetal Alcohol Spectrum Disorders (FASD) encompass a group of highly prevalent conditions resulting from prenatal alcohol exposure. Alcohol exposure during the third trimester of pregnancy overlapping with the brain growth spurt is detrimental to white matter growth and myelination, particularly in the corpus callosum, ultimately affecting tissue integrity in adolescence. Traditional neuroimaging techniques have been essential for assessing neurodevelopment in affected youth; however, these methods are limited in their capacity to track subtle microstructural alterations to white matter, thus restricting their effectiveness in monitoring therapeutic intervention. In this preliminary study we use a highly sensitive and clinically translatable Magnetic Resonance Elastography (MRE) protocol for assessing brain tissue microstructure through its mechanical properties following an exercise intervention in a rat model of FASD. Methods: Rat pups were divided into two groups: alcohol-exposed (AE) pups which received alcohol in milk substitute (5.25 g/kg/day) via intragastric intubation on postnatal days (PD) four through nine during the rat brain growth spurt (Dobbing and Sands, 1979), or sham-intubated (SI) controls. In adolescence, on PD 30, half AE and SI rats were randomly assigned to either a modified home cage with free access to a running wheel or to a new home cage for 12 days (Gursky and Klintsova, 2017). Previous studies conducted in the lab have shown that 12 days of voluntary exercise intervention in adolescence immediately ameliorated callosal myelination in AE rats (Milbocker et al., 2022, 2023). MRE was used to measure longitudinal changes to mechanical properties of the whole brain and the corpus callosum at intervention termination and one-month post-intervention. Histological quantification of precursor and myelinating oligoglia in corpus callosum was performed one-month post-intervention. Results: Prior to intervention, AE rats had lower forebrain stiffness in adolescence compared to SI controls ( p = 0.02). Exercise intervention immediately mitigated this effect in AE rats, resulting in higher forebrain stiffness post-intervention in adolescence. Similarly, we discovered that forebrain damping ratio was lowest in AE rats in adolescence ( p < 0.01), irrespective of intervention exposure. One-month post-intervention in adulthood, AE and SI rats exhibited comparable forebrain stiffness and damping ratio (p > 0.05). Taken together, these MRE data suggest that adolescent exercise intervention supports neurodevelopmental "catch-up" in AE rats. Analysis of the stiffness and damping ratio of the body of corpus callosum revealed that these measures increased with age. Finally, histological quantification of myelinating oligodendrocytes one-month post-intervention revealed a negative rebound effect of exercise cessation on the total estimate of these cells in the body of corpus callosum, irrespective of treatment group which was not convergent with noninvasive MRE measures. Conclusions: This is the first application of MRE to measure changes in brain mechanical properties in a rodent model of FASD. MRE successfully captured alcohol-related changes to forebrain stiffness and damping ratio in adolescence. These preliminary findings expand upon results from previous studies which used traditional diffusion neuroimaging to identify structural changes to the adolescent brain in rodent models of FASD (Milbocker et al., 2022; Newville et al., 2017). Additionally, in vivo MRE identified an exercise-related alteration to forebrain stiffness that occurred in adolescence, immediately post-intervention.

10.
Proc Natl Acad Sci U S A ; 106(15): 6404-9, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332787

RESUMO

The spatiotemporal patterning of Ca(2+) signals regulates numerous cellular functions, and is determined by the functional properties and spatial clustering of inositol trisphosphate receptor (IP(3)R) Ca(2+) release channels in the endoplasmic reticulum membrane. However, studies at the single-channel level have been hampered because IP(3)Rs are inaccessible to patch-clamp recording in intact cells, and because excised organelle and bilayer reconstitution systems disrupt the Ca(2+)-induced Ca(2+) release (CICR) process that mediates channel-channel coordination. We introduce here the use of total internal reflection fluorescence microscopy to image single-channel Ca(2+) flux through individual and clustered IP(3)Rs in intact mammalian cells. This enables a quantal dissection of the local calcium puffs that constitute building blocks of cellular Ca(2+) signals, revealing stochastic recruitment of, on average, approximately 6 active IP(3)Rs clustered within <500 nm. Channel openings are rapidly ( approximately 10 ms) recruited by opening of an initial trigger channel, and a similarly rapid inhibitory process terminates puffs despite local [Ca(2+)] elevation that would otherwise sustain Ca(2+)-induced Ca(2+) release indefinitely. Minimally invasive, nano-scale Ca(2+) imaging provides a powerful tool for the functional study of intracellular Ca(2+) release channels while maintaining the native architecture and dynamic interactions essential for discrete and selective cell signaling.


Assuntos
Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Sinalização do Cálcio , Linhagem Celular , Humanos , Ativação do Canal Iônico , Cinética
11.
Front Behav Neurosci ; 16: 993601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160686

RESUMO

Alcohol exposure (AE) during the prenatal period could result in fetal alcohol spectrum disorders (FASDs), one of many deficits of which is impaired executive functioning (EF). EF relies on the coordination of activity between the medial prefrontal cortex (mPFC) and hippocampus (HPC) by the thalamic nucleus reuniens (Re), a structure that has been shown to be damaged following high-dose AE in a rodent model of third trimester exposure. Notably, mPFC neurons do not project directly to HPC, but rather communicate with it via a disynaptic pathway where the first cortical axons synapse on neurons in Re, which in turn send axons to make contacts with hippocampal cells. This experiment investigated the effect of binge AE (5.25 g/kg/day, two doses 2 h apart) during postnatal days 4-9 on the length of medial prefrontal axonal projections within Re in Long Evans rat. AE reduced the cumulative length of mPFC-originating axon terminals in Re in female rats, with male rats exhibiting shorter cumulative lengths when compared to female procedural control animals. Additionally, Re volume was decreased in AE animals, a finding that reproduced previously reported data. This experiment helps us better understand how early life AE affects prefrontal-thalamic-hippocampal connectivity that could underlie subsequent EF deficits.

12.
Behav Brain Res ; 428: 113895, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35439523

RESUMO

Current pharmacotherapy for post-traumatic stress disorder (PTSD), a debilitating psychiatric condition that develops in a subset of traumatized individuals, is inadequate. Over the past two decades, numerous studies have shown that ketamine, a non-competitive NMDA receptor antagonist, exerts rapid antidepressant effects in both humans and rodents, but the anxiolytic profile of ketamine, as well as its ability to treat PTSD-related symptoms, is still unclear. Thus, we examined the ability of a single administration of ketamine to prevent the onset of PTSD-like sequelae in a chronic psychosocial stress model of PTSD. Adult male and female Sprague-Dawley rats were exposed to a cat on two occasions, in combination with chronic social instability. Immediately following the cat exposure on Day 1, rats were given intraperitoneal injections of 10 mg/kg or 15 mg/kg ketamine or vehicle; control rats were injected with vehicle. Three weeks after the second cat exposure, we assessed symptoms of hyperarousal and anxiety-like behavior in the rats. In males, chronic stress led to greater anxiety on the elevated plus maze and in the open field; in females, chronic stress resulted in an exaggerated startle response and greater anxiety in the open field. These effects were most effectively prevented by the administration of 10 mg/kg ketamine. These findings demonstrate that ketamine can prophylactically prevent the onset of PTSD-like behaviors in males and females. Their sex-dependent nature is consistent with previous preclinical research and highlights the need for future research to examine their neurobiological basis.


Assuntos
Ketamina , Transtornos de Estresse Pós-Traumáticos , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Modelos Animais de Doenças , Feminino , Ketamina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico
13.
Biophys J ; 100(8): L37-9, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21504718

RESUMO

A new mechanism of cell-cell communication was recently proposed after the discovery of tunneling nanotubes (TNTs) between cells. TNTs are membrane protrusions with lengths of tens of microns and diameters of a few hundred nanometers that permit the exchange of membrane and cytoplasmic constituents between neighboring cells. TNTs have been reported to mediate intercellular Ca(2+) signaling; however, our simulations indicate that passive diffusion of Ca(2+) ions alone would be inadequate for efficient transmission between cells. Instead, we observed spontaneous and inositol trisphosphate (IP(3))-evoked Ca(2+) signals within TNTs between cultured mammalian cells, which sometimes remained localized and in other instances propagated as saltatory waves to evoke Ca(2+) signals in a connected cell. Consistent with this, immunostaining showed the presence of both endoplasmic reticulum and IP(3) receptors along the TNT. We propose that IP(3) receptors may actively propagate intercellular Ca(2+) signals along TNTs via Ca(2+)-induced Ca(2+) release, acting as amplification sites to overcome the limitations of passive diffusion in a chemical analog of electrical transmission of action potentials.


Assuntos
Sinalização do Cálcio , Comunicação Celular , Extensões da Superfície Celular/metabolismo , Junções Intercelulares/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Nanotubos
14.
Biophys J ; 101(11): 2638-44, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261051

RESUMO

The behavior of biological systems is determined by the properties of their component molecules, but the interactions are usually too complex to understand fully how molecular behavior generates cellular behavior. Ca(2+) signaling by inositol trisphosphate receptors (IP(3)R) offers an opportunity to understand this relationship because the cellular behavior is defined largely by Ca(2+)-mediated interactions between IP(3)R. Ca(2+) released by a cluster of IP(3)R (giving a local Ca(2+) puff) diffuses and ignites the behavior of neighboring clusters (to give repetitive global Ca(2+) spikes). We use total internal reflection fluorescence microscopy of two mammalian cell lines to define the temporal relationships between Ca(2+) puffs (interpuff intervals, IPI) and Ca(2+) spikes (interspike intervals) evoked by flash photolysis of caged IP(3). We find that IPI are much shorter than interspike intervals, that puff activity is stochastic with a recovery time that is much shorter than the refractory period of the cell, and that IPI are not periodic. We conclude that Ca(2+) spikes do not arise from oscillatory dynamics of IP(3)R clusters, but that repetitive Ca(2+) spiking with its longer timescales is an emergent property of the dynamics of the whole cluster array.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Células/efeitos dos fármacos , Células/metabolismo , Inositol 1,4,5-Trifosfato/farmacologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Microscopia de Fluorescência , Fotólise/efeitos dos fármacos , Fatores de Tempo
15.
J Neurosci ; 30(26): 8797-806, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592201

RESUMO

Postsynaptic release of Ca(2+) from intracellular stores is an important means of cellular signaling that mediates numerous forms of synaptic plasticity. Previous studies have identified a postsynaptic intracellular Ca(2+) requirement for a form of short-term plasticity, post-tetanic potentiation (PTP) at sensory neuron (SN)-motor neuron synapses in Aplysia. Here, we show that postsynaptic IP(3)-mediated Ca(2+) release in response to a presynaptic tetanus in an SN that induces PTP can confer transient plasticity onto a neighboring SN synapse receiving subthreshold activation. This heterosynaptic sharing of plasticity represents a dynamic, short-term synaptic enhancement of synaptic inputs onto a common postsynaptic target. Heterosynaptic sharing is blocked by postsynaptic disruption of Ca(2+)- and IP(3)-mediated signaling, and, conversely, it is mimicked by postsynaptic injection of nonhydrolyzable IP(3), and by photolysis of caged IP(3) in the MN. The molecular mechanism for heterosynaptic sharing involves metabotropic glutamate receptors and Homer-dependent interactions, indicating that Homer can facilitate the integration of Ca(2+)-dependent plasticity at neighboring postsynaptic sites and provides a postsynaptic mechanism for the spread of plasticity induced by presynaptic activation. Our results support a model in which postsynaptic summation of IP(3) signals from suprathreshold and subthreshold inputs results in molecular coincidence detection that gives rise to a novel form of heterosynaptic plasticity.


Assuntos
Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/fisiologia , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Aplysia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Proteínas de Arcabouço Homer , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/genética , Espaço Intracelular/metabolismo , Neurônios Motores/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Sinapses/efeitos dos fármacos , Fatores de Tempo
16.
Front Behav Neurosci ; 15: 786234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924972

RESUMO

Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.

17.
Front Behav Neurosci ; 15: 675206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220463

RESUMO

People with post-traumatic stress disorder (PTSD) exhibit heightened anxiety and enhanced negative feedback of the hypothalamus-pituitary-adrenal (HPA) axis. We previously reported that male rats exposed to a predator-based psychosocial stress model of PTSD exhibited comparable changes in anxiety-like behavior and HPA axis activity, including lower baseline levels of corticosterone and a greater suppression of corticosterone after dexamethasone administration. Here, we assessed whether we would observe similar effects in female rats exposed to this model. Adult female Sprague-Dawley rats were exposed to a cat on two occasions (separated by 10 days), in combination with chronic social instability. Three weeks after the second cat exposure, we assessed anxiety-like behavior on an elevated plus maze (EPM) and collected blood samples from rats in the absence or presence of dexamethasone to quantify serum corticosterone levels. Although stressed females did not display heightened anxiety on the EPM, they exhibited significantly lower overall corticosterone levels and a greater suppression of corticosterone after dexamethasone administration. The observation of significantly lower overall corticosterone levels in stressed females was replicated in a separate, independent experiment. These findings suggest that the predator-based psychosocial stress model of PTSD may be useful for studying mechanisms that underlie changes in HPA axis function in females exposed to trauma.

18.
Biophys J ; 99(2): 437-46, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20643061

RESUMO

The subcellular localization of membrane Ca2+ channels is crucial for their functioning, but is difficult to study because channels may be distributed more closely than the resolution of conventional microscopy is able to detect. We describe a technique, stochastic channel Ca2+ nanoscale resolution (SCCaNR), employing Ca2+-sensitive fluorescent dyes to localize stochastic openings and closings of single Ca2+-permeable channels within <50 nm, and apply it to examine the clustered arrangement of inositol trisphosphate receptor (IP3R) channels underlying local Ca2+ puffs. Fluorescence signals (blips) arising from single functional IP3Rs are almost immotile (diffusion coefficient<0.003 microm2 s(-1)), as are puff sites over prolonged periods, suggesting that the architecture of this signaling system is stable and not subject to rapid, dynamic rearrangement. However, rapid stepwise changes in centroid position of fluorescence are evident within the durations of individual puffs. These apparent movements likely result from asynchronous gating of IP3Rs distributed within clusters that have an overall diameter of approximately 400 nm, indicating that the nanoscale architecture of IP3R clusters is important in shaping local Ca2+ signals. We anticipate that SCCaNR will complement superresolution techniques such as PALM and STORM for studies of Ca2+ channels as it obviates the need for photoswitchable labels and provides functional as well as spatial information.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Difusão , Humanos , Ativação do Canal Iônico , Microscopia de Fluorescência , Transporte Proteico , Fatores de Tempo , Xenopus/metabolismo
19.
Materials (Basel) ; 13(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033099

RESUMO

Reinforced concrete is the most widely used building material in history. However, alternative natural and synthetic materials are being investigated for reinforcing concrete structures, given the limited availability of steel in developing countries, the rising costs of steel as the main reinforcement material, the amount of energy required by the production of steel, and the sensitivity of steel to corrosion. This paper reports on a unique use of bamboo as a sustainable alternative to synthetic fibers for production of bamboo fiber-reinforced polymer composite as reinforcement for structural-concrete beams. The aim of this study is to evaluate the feasibility of using this novel bamboo composite reinforcement system for reinforced structural-concrete beams. The bond strength with concrete matrix, as well as durability properties, including the water absorption and alkali resistance of the bamboo composite reinforcement, are also investigated in this study. The results of this study indicate that bamboo composite reinforced concrete beams show comparable ultimate loads with regards to fiber reinforced polymer (FRP) reinforced concrete beams according to the ACI standard. Furthermore, the results demonstrate the potential of the newly developed bamboo composite material for use as a new type of element for non-deflection-critical applications of reinforced structural-concrete members. The design guidelines that are stated in ACI 440.1R-15 for fiber reinforced polymer (FRP) reinforcement bars are also compared with the experimental results that were obtained in this study. The American Concrete Institute (ACI) design guidelines are suitable for non-deflection-critical design and construction of bamboo-composite reinforced-concrete members. This study demonstrates that there is significant potential for practical implementation of the bamboo-composite reinforcement described in this paper. The results of this study can be utilized for construction of low-cost and low-rise housing units where the need for ductility is low and where secondary-element failure provides adequate warning of collapse.

20.
Cell Calcium ; 63: 43-47, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28108028

RESUMO

The inositol trisphosphate (IP3) signaling pathway evokes local Ca2+ signals (Ca2+ puffs) that arise from the concerted openings of clustered IP3 receptor/channels in the ER membrane. Physiological activation is triggered by binding of agonists to G-protein-coupled receptors (GPCRs) on the cell surface, leading to cleavage of phosphatidyl inositol bisphosphate and release of IP3 into the cytosol. Photorelease of IP3 from a caged precursor provides a convenient and widely employed means to study the final stage of IP3-mediated Ca2+ liberation, bypassing upstream signaling events to enable more precise control of the timing and relative concentration of cytosolic IP3. Here, we address whether Ca2+ puffs evoked by photoreleased IP3 fully replicate those arising from physiological agonist stimulation. We imaged puffs in individual SH-SY5Y neuroblastoma cells that were sequentially stimulated by picospritzing extracellular agonist (carbachol, CCH or bradykinin, BK) followed by photorelease of a poorly-metabolized IP3 analog, i-IP3. The centroid localizations of fluorescence signals during puffs evoked in the same cells by agonists and photorelease substantially overlapped (within ∼1µm), suggesting that IP3 from both sources accesses the same, or closely co-localized clusters of IP3Rs. Moreover, the time course and spatial spread of puffs evoked by agonists and photorelease matched closely. Because photolysis generates IP3 uniformly throughout the cytoplasm, our results imply that IP3 generated in SH-SY5Y cells by activation of receptors to CCH and BK also exerts broadly distributed actions, rather than specifically activating a subpopulation of IP3Rs that are scaffolded in close proximity to cell surface receptors to form a signaling nanodomain.


Assuntos
Bradicinina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Carbacol/farmacologia , Inositol 1,4,5-Trifosfato/metabolismo , Luz , Neuroblastoma/metabolismo , Agonistas Colinérgicos/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos da radiação , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cinética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Células Tumorais Cultivadas , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA