Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Nature ; 609(7929): 994-997, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952714

RESUMO

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses1-4. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral evolution5. Here, we use a new phylogenomic method to search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. In a 1.6 million sample tree from May 2021, we identify 589 recombination events, which indicate that around 2.7% of sequenced SARS-CoV-2 genomes have detectable recombinant ancestry. Recombination breakpoints are inferred to occur disproportionately in the 3' portion of the genome that contains the spike protein. Our results highlight the need for timely analyses of recombination for pinpointing the emergence of recombinant lineages with the potential to increase transmissibility or virulence of the virus. We anticipate that this approach will empower comprehensive real-time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.


Assuntos
COVID-19 , Genoma Viral , Pandemias , Filogenia , Recombinação Genética , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Genoma Viral/genética , Humanos , Mutação , Recombinação Genética/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Seleção Genética/genética , Glicoproteína da Espícula de Coronavírus/genética , Virulência/genética
2.
Nature ; 609(7929): 1012-1020, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131015

RESUMO

Medulloblastoma, a malignant childhood cerebellar tumour, segregates molecularly into biologically distinct subgroups, suggesting that a personalized approach to therapy would be beneficial1. Mouse modelling and cross-species genomics have provided increasing evidence of discrete, subgroup-specific developmental origins2. However, the anatomical and cellular complexity of developing human tissues3-particularly within the rhombic lip germinal zone, which produces all glutamatergic neuronal lineages before internalization into the cerebellar nodulus-makes it difficult to validate previous inferences that were derived from studies in mice. Here we use multi-omics to resolve the origins of medulloblastoma subgroups in the developing human cerebellum. Molecular signatures encoded within a human rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar brush cell expression profiles that are maintained in group 3 and group 4 medulloblastoma, suggesting a convergent basis. A systematic diagnostic-imaging review of a prospective institutional cohort localized the putative anatomical origins of group 3 and group 4 tumours to the nodulus. Our results connect the molecular and phenotypic features of clinically challenging medulloblastoma subgroups to their unified beginnings in the rhombic lip in the early stages of human development.


Assuntos
Linhagem da Célula , Neoplasias Cerebelares , Meduloblastoma , Metencéfalo , Animais , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/embriologia , Neoplasias Cerebelares/patologia , Cerebelo/embriologia , Humanos , Meduloblastoma/classificação , Meduloblastoma/embriologia , Meduloblastoma/patologia , Metencéfalo/embriologia , Camundongos , Neurônios/patologia , Estudos Prospectivos
3.
Genes Dev ; 34(17-18): 1161-1176, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820036

RESUMO

Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9-10 ) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9-10). While BcorΔE9-10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9-10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/- ;BcorΔE9-10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/- GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/- ;BcorΔE9-10 tumors. Overall, our data suggests that BCOR-PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.


Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/genética , Animais , Carcinogênese/genética , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Humanos , Camundongos , Mutação , Receptor Patched-1/genética , Proteínas do Grupo Polycomb/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência
4.
Nature ; 580(7803): 396-401, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296180

RESUMO

Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.


Assuntos
Neoplasias Cerebelares/metabolismo , Mutação em Linhagem Germinativa , Meduloblastoma/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Feminino , Humanos , Masculino , Meduloblastoma/genética , Linhagem , RNA de Transferência/metabolismo , Fatores de Elongação da Transcrição/genética
5.
Nature ; 572(7767): 74-79, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341285

RESUMO

Medulloblastoma is a malignant childhood cerebellar tumour type that comprises distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. Here we used single-cell transcriptomics to investigate intra- and intertumoral heterogeneity in 25 medulloblastomas spanning all molecular subgroups. WNT, SHH and Group 3 tumours comprised subgroup-specific undifferentiated and differentiated neuronal-like malignant populations, whereas Group 4 tumours consisted exclusively of differentiated neuronal-like neoplastic cells. SHH tumours closely resembled granule neurons of varying differentiation states that correlated with patient age. Group 3 and Group 4 tumours exhibited a developmental trajectory from primitive progenitor-like to more mature neuronal-like cells, the relative proportions of which distinguished these subgroups. Cross-species transcriptomics defined distinct glutamatergic populations as putative cells-of-origin for SHH and Group 4 subtypes. Collectively, these data provide insights into the cellular and developmental states underlying subtype-specific medulloblastoma biology.


Assuntos
Genômica , Meduloblastoma/genética , Meduloblastoma/patologia , Análise de Célula Única , Transcriptoma , Adolescente , Adulto , Animais , Linhagem da Célula , Cerebelo/metabolismo , Cerebelo/patologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Lactente , Meduloblastoma/classificação , Camundongos , Neurônios/metabolismo , Neurônios/patologia
6.
Trends Genet ; 37(3): 235-250, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272592

RESUMO

Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.


Assuntos
Carcinogênese/genética , Cromatina/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , Heterogeneidade Genética , Mutação em Linhagem Germinativa/genética , Humanos , Meduloblastoma/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética
7.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37651464

RESUMO

MOTIVATION: Identifying and tracking recombinant strains of SARS-CoV-2 is critical to understanding the evolution of the virus and controlling its spread. But confidently identifying SARS-CoV-2 recombinants from thousands of new genome sequences that are being shared online every day is quite challenging, causing many recombinants to be missed or suffer from weeks of delay in being formally identified while undergoing expert curation. RESULTS: We present RIVET-a software pipeline and visual platform that takes advantage of recent algorithmic advances in recombination inference to comprehensively and sensitively search for potential SARS-CoV-2 recombinants and organize the relevant information in a web interface that would help greatly accelerate the process of identifying and tracking recombinants. AVAILABILITY AND IMPLEMENTATION: RIVET-based web interface displaying the most updated analysis of potential SARS-CoV-2 recombinants is available at https://rivet.ucsd.edu/. RIVET's frontend and backend code is freely available under the MIT license at https://github.com/TurakhiaLab/rivet and the documentation for RIVET is available at https://turakhialab.github.io/rivet/. The inputs necessary for running RIVET's backend workflow for SARS-CoV-2 are available through a public database maintained and updated daily by UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/).


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Bases de Dados Factuais , Documentação , Software
8.
Mol Ther ; 30(1): 130-144, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34737067

RESUMO

Disruption of CCR5 or CXCR4, the main human immunodeficiency virus type 1 (HIV-1) co-receptors, has been shown to protect primary human CD4+ T cells from HIV-1 infection. Base editing can install targeted point mutations in cellular genomes, and can thus efficiently inactivate genes by introducing stop codons or eliminating start codons without double-stranded DNA break formation. Here, we applied base editors for individual and simultaneous disruption of both co-receptors in primary human CD4+ T cells. Using cytosine base editors we observed premature stop codon introduction in up to 89% of sequenced CCR5 or CXCR4 alleles. Using adenine base editors we eliminated the start codon in CCR5 in up to 95% of primary human CD4+ T cell and up to 88% of CD34+ hematopoietic stem and progenitor cell target alleles. Genome-wide specificity analysis revealed low numbers of off-target mutations that were introduced by base editing, located predominantly in intergenic or intronic regions. We show that our editing strategies prevent transduction with CCR5-tropic and CXCR4-tropic viral vectors in up to 79% and 88% of human CD4+ T cells, respectively. The engineered T cells maintained functionality and overall our results demonstrate the effectiveness of base-editing strategies for efficient and specific ablation of HIV co-receptors in clinically relevant cell types.


Assuntos
Edição de Genes , Receptores CCR5 , Receptores CXCR4 , Edição de Genes/métodos , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/terapia , HIV-1/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Linfócitos T/metabolismo
9.
Learn Behav ; 51(2): 131-134, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810744

RESUMO

Here, we address Hansen Wheat et al.'s commentary in this journal in response to Salomons et al. Current Biology, 31(14), 3137-3144.E11, (2021). We conduct additional analyses in response to Hansen Wheat et al.'s two main questions. First, we examine the claim that it was the move to a human home environment which enabled the dog puppies to outperform the wolf puppies in gesture comprehension tasks. We show that the youngest dog puppies who had not yet been individually placed in raisers' homes were still highly skilled, and outperformed similar-aged wolf puppies who had higher levels of human interaction. Second, we address the claim that willingness to approach a stranger can explain the difference between dog and wolf pups' ability to succeed in gesture comprehension tasks. We explain the various controls in the original study that render this explanation insufficient, and demonstrate via model comparison that the covariance of species and temperament also make this parsing impossible. Overall, our additional analyses and considerations support the domestication hypothesis as laid out by Salomons et al. Current Biology, 31(14), 3137-3144.E11, (2021).


Assuntos
Lobos , Cães , Animais , Humanos , Lobos/fisiologia , Triticum , Domesticação , Gestos
10.
Proc Natl Acad Sci U S A ; 117(28): 16143-16148, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601234

RESUMO

Matter's sensitivity to light polarization is characterized by linear and circular polarization effects, corresponding to the system's anisotropy and handedness, respectively. Recent investigations into the near-field properties of evanescent waves have revealed polarization states with out-of-phase transverse and longitudinal oscillations, resulting in trochoidal, or cartwheeling, field motion. Here, we demonstrate matter's inherent sensitivity to the direction of the trochoidal field and name this property trochoidal dichroism. We observe trochoidal dichroism in the differential excitation of bonding and antibonding plasmon modes for a system composed of two coupled dipole scatterers. Trochoidal dichroism constitutes the observation of a geometric basis for polarization sensitivity that fundamentally differs from linear and circular dichroism. It could also be used to characterize molecular systems, such as certain light-harvesting antennas, with cartwheeling charge motion upon excitation.

11.
J Stroke Cerebrovasc Dis ; 32(8): 107211, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331250

RESUMO

BACKGROUND: Acute Ischemic Stroke (AIS), a major cause of disability, was previously associated with multiple metabolomic changes, but many findings were contradictory. Case-control and longitudinal study designs could have played a role in that. To clarify metabolomic changes, we performed a simultaneous comparison of ischemic stroke metabolome in acute, chronic stages of stroke and controls. METHODS: Through the nuclear magnetic resonance (NMR) platform, we evaluated 271 serum metabolites from a cohort of 297 AIS patients in acute and chronic stages and 159 controls. We used Sparse Partial Least Squares-Discriminant analysis (sPLS-DA) to evaluate group disparity; multivariate regression to compare metabolome in acute, chronic stages of stroke and controls; and mixed regression to compare metabolome acute and chronic stages of stroke. We applied false discovery rate (FDR) to our calculations. RESULTS: The sPLS-DA revealed separation of the metabolome in acute, chronic stages of stroke and controls. Regression analysis identified 38 altered metabolites. Ketones, branched-chain amino acids (BCAAs), energy, and inflammatory compounds were mostly elevated, while alanine and glutamine were decreased in the acute stage. These metabolites declined/increased in the chronic stage, often to the same levels as in controls. Levels of fatty acids, phosphatidylcholines, phosphoglycerides, and sphingomyelins did not change between acute and chronic stages, but were different comparing to controls. CONCLUSION: Our pilot study identified metabolites associated with acute stage of ischemic stroke and those that are altered in stroke patients comparing to controls regardless of stroke acuity. Future investigation in a larger independent cohort is needed to validate these findings.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico , Estudos Longitudinais , Projetos Piloto , Acidente Vascular Cerebral/diagnóstico por imagem , Alanina , Biomarcadores
12.
Am J Community Psychol ; 71(1-2): 174-183, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35997562

RESUMO

American Indian/Alaska Native (AI/AN) communities are disproportionally impacted by the opioid overdose epidemic. There remains a dearth of research evaluating methods for effectively implementing treatments for opioid use disorder (OUD) within these communities. We describe proceedings from a 2-day Collaborative Board (CB) meeting tasked with developing an implementation intervention for AI/AN clinical programs to improve the delivery of medications to treat OUD (MOUD). The CB was comprised of Elders, cultural leaders, providers, individuals with lived experience with OUD, and researchers from over 25 communities, organizations, and academic institutions. Conversations were audio-recorded, transcribed, and coded by two academic researchers with interpretation oversight provided by the CB. These proceedings provided a foundation for ongoing CB work and a frame for developing the program-level implementation intervention using a strength-based and holistic model of OUD recovery and wellbeing. Topics of discussion posed to the CB included engagement and recovery strategies, integration of extended family traditions, and addressing stigma and building trust with providers and clients. Integration of traditional healing practices, ceremonies, and other cultural practices was recommended. The importance of centering AI/AN culture and involving family were highlighted as priorities for the intervention.


Assuntos
Indígenas Norte-Americanos , Transtornos Relacionados ao Uso de Opioides , Humanos , Idoso , Indígena Americano ou Nativo do Alasca , Terapia Comportamental
13.
Angew Chem Int Ed Engl ; 62(25): e202302123, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36929127

RESUMO

Luminescent materials with tunable emission are becoming increasingly desirable as we move towards needing efficient Light Emitting Diodes (LEDs) for displays. Key to developing better displays is the advancement of strategies for rationally designing emissive materials that are tunable and efficient. We report a series of emissive metal-organic frameworks (MOFs) generated using BUT-10 (BUT: Beijing University of Technology) that emits green light with λmax at 525 nm. Post-synthetic reduction of the ketone on the fluorenone ligand in BUT-10 generates new materials, BUT-10-M and BUT-10-R. The emission for BUT-10-R is hypsochromically-shifted by 113 nm. Multivariate BUT-10-M structures demonstrate emission with two maxima corresponding to the emission of both fluorenol and fluorenone moieties present in their structures. Our study represents a novel post-synthetic ligand reduction strategy for producing emissive MOFs with tunable emission ranging from green, white-blue to deep blue.


Assuntos
Estruturas Metalorgânicas , Ligantes , Cetonas , Luz , Luminescência
14.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L273-L282, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936510

RESUMO

Mouse models of acute lung injury (ALI) have been instrumental for studies of the biological underpinnings of lung inflammation and permeability, but murine models of sepsis generate minimal lung injury. Our goal was to create a murine sepsis model of ALI that reflects the inflammation, lung edema, histological abnormalities, and physiological dysfunction that characterize ALI. Using a cecal slurry (CS) model of polymicrobial abdominal sepsis and exposure to hyperoxia (95%), we systematically varied the timing and dose of the CS injection, fluids and antibiotics, and dose of hyperoxia. We found that CS alone had a high mortality rate that was improved with the addition of antibiotics and fluids. Despite this, we did not see evidence of ALI as measured by bronchoalveolar lavage (BAL) cell count, total protein, C-X-C motif chemokine ligand 1 (CXCL-1) or by lung wet:dry weight ratio. Addition of hyperoxia [95% fraction of inspired oxygen ([Formula: see text])] to CS immediately after CS injection increased BAL cell counts, CXCL-1, and lung wet:dry weight ratio but was associated with 40% mortality. Splitting the hyperoxia treatment into two 12-h exposures (0-12 h and 24-36 h) after CS injection increased survival to 75% and caused significant lung injury compared with CS alone as measured by increased BAL total cell count (92,500 vs. 240,000, P = 0.0004), BAL protein (71 vs. 103 µg/mL, P = 0.0030), and lung wet:dry weight ratio (4.5 vs. 5.5, P = 0.0005), and compared with sham as measured by increased BAL CXCL-1 (20 vs. 2,372 pg/mL, P < 0.0001) and histological lung injury score (1.9 vs. 4.2, P = 0.0077). In addition, our final model showed evidence of lung epithelial [increased BAL and plasma receptor for advanced glycation end products (RAGE)] and endothelial (increased Syndecan-1 and sulfated glycosaminoglycans) injury. In conclusion, we have developed a clinically relevant mouse model of sepsis-induced ALI using intraperitoneal injection of CS, antibiotics and fluids, and hyperoxia. This clinically relevant model can be used for future studies of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Sepse , Lesão Pulmonar Aguda/patologia , Animais , Antibacterianos/efeitos adversos , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Hiperóxia/complicações , Hiperóxia/patologia , Inflamação/patologia , Pulmão/metabolismo , Camundongos , Permeabilidade , Sepse/patologia
15.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409420

RESUMO

The invasive capabilities of glioblastoma (GBM) define the cancer's aggressiveness, treatment resistance, and overall mortality. The tumor microenvironment influences the molecular behavior of cells, both epigenetically and genetically. Current forces being studied include properties of the extracellular matrix (ECM), such as stiffness and "sensing" capabilities. There is currently limited data on the physical forces in GBM-both relating to how they influence their environment and how their environment influences them. This review outlines the advances that have been made in the field. It is our hope that further investigation of the physical forces involved in GBM will highlight new therapeutic options and increase patient survival. A search of the PubMed database was conducted through to 23 March 2022 with the following search terms: (glioblastoma) AND (physical forces OR pressure OR shear forces OR compression OR tension OR torsion) AND (migration OR invasion). Our review yielded 11 external/applied/mechanical forces and 2 tumor microenvironment (TME) forces that affect the ability of GBM to locally migrate and invade. Both external forces and forces within the tumor microenvironment have been implicated in GBM migration, invasion, and treatment resistance. We endorse further research in this area to target the physical forces affecting the migration and invasion of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/patologia , Glioblastoma/patologia , Humanos , Fenômenos Mecânicos , Microambiente Tumoral
16.
J Neurosci ; 40(10): 2139-2153, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969469

RESUMO

Despite clear evidence linking the basal ganglia to the control of outcome insensitivity (i.e., habit) and behavioral vigor (i.e., its behavioral speed/fluidity), it remains unclear whether or how these functions relate to one another. Here, using male Long-Evans rats in response-based and cue-based maze-running tasks, we demonstrate that phasic dorsolateral striatum (DLS) activity occurring at the onset of a learned behavior regulates how vigorous and habitual it is. In a response-based task, brief optogenetic excitation at the onset of runs decreased run duration and the occurrence of deliberative behaviors, whereas midrun stimulation carried little effect. Outcome devaluation showed these runs to be habitual. DLS inhibition at run start did not produce robust effects on behavior until after outcome devaluation. At that time, when the DLS was plausibly most critically required for performance (i.e., habitual), inhibition reduced performance vigor measures and caused a dramatic loss of habitual responding (i.e., animals quit the task). In a second cue-based "beacon" task requiring behavior initiation at the start of the run and again in the middle of the run, DLS excitation at both time points could improve the vigor of runs. Postdevaluation testing showed behavior on the beacon task to be habitual as well. This pattern of results suggests that one role for phasic DLS activity at behavior initiation is to promote the execution of the behavior in a vigorous and habitual fashion by a diverse set of measures.SIGNIFICANCE STATEMENT Our research expands the literature twofold. First, we find that features of a habitual behavior that are typically studied separately (i.e., maze response performance, deliberation movements, running vigor, and outcome insensitivity) are quite closely linked together. Second, efforts have been made to understand "what" the dorsolateral striatum (DLS) does for habitual behavior, and our research provides a key set of results showing "when" it is important (i.e., at behavior initiation). By showing such dramatic control over habits by DLS activity in a phasic time window, plausible real-world applications could involve more informed DLS perturbations to curb intractably problematic habits.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Hábitos , Animais , Masculino , Ratos , Ratos Long-Evans
17.
Eur J Neurosci ; 53(8): 2567-2579, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462844

RESUMO

When pursuing desirable outcomes, one must make the decision between exploring possible actions to obtain those outcomes and exploiting known strategies to maximize efficiency. The dorsolateral striatum (DLS) has been extensively studied with respect to how actions can develop into habits and has also been implicated as an area involved in governing exploitative behavior. Surprisingly, prior work has shown that DLS cholinergic interneurons (ChIs) are not involved in the canonical habit formation function ascribed to the DLS but are instead modulators of behavioral flexibility after initial learning. To further probe this, we evaluated the role of DLS ChIs in behavioral exploration during a brief instrumental training experiment. Through designer receptors exclusively activated by designer drugs (DREADDs) in ChAT-Cre rats, ChIs in the DLS were inhibited during specific phases of the experiment: instrumental training, free-reward delivery, at both times, or never. Without ChI activity during instrumental training, animals biased their responding toward an "optimal" strategy while continuing to work efficiently. This effect was observed again when contingencies were removed as animals with ChIs offline during that phase, regardless of ChI inhibition previously, decreased responding more than animals with ChIs intact. These findings build upon a growing body of literature implicating ChIs in the striatum as gate-keepers of behavioral flexibility and exploration.


Assuntos
Corpo Estriado , Neostriado , Animais , Colinérgicos , Hábitos , Interneurônios , Ratos
18.
Acta Neuropathol ; 142(5): 859-871, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34409497

RESUMO

Medulloblastoma, a common pediatric malignant central nervous system tumour, represent a small proportion of brain tumours in adults. Previously it has been shown that in adults, Sonic Hedgehog (SHH)-activated tumours predominate, with Wingless-type (WNT) and Group 4 being less common, but molecular risk stratification remains a challenge. We performed an integrated analysis consisting of genome-wide methylation profiling, copy number profiling, somatic nucleotide variants and correlation of clinical variables across a cohort of 191 adult medulloblastoma cases identified through the Medulloblastoma Advanced Genomics International Consortium. We identified 30 WNT, 112 SHH, 6 Group 3, and 41 Group 4 tumours. Patients with SHH tumours were significantly older at diagnosis compared to other subgroups (p < 0.0001). Five-year progression-free survival (PFS) for WNT, SHH, Group 3, and Group 4 tumours was 64.4 (48.0-86.5), 61.9% (51.6-74.2), 80.0% (95% CI 51.6-100.0), and 44.9% (95% CI 28.6-70.7), respectively (p = 0.06). None of the clinical variables (age, sex, metastatic status, extent of resection, chemotherapy, radiotherapy) were associated with subgroup-specific PFS. Survival among patients with SHH tumours was significantly worse for cases with chromosome 3p loss (HR 2.9, 95% CI 1.1-7.6; p = 0.02), chromosome 10q loss (HR 4.6, 95% CI 2.3-9.4; p < 0.0001), chromosome 17p loss (HR 2.3, 95% CI 1.1-4.8; p = 0.02), and PTCH1 mutations (HR 2.6, 95% CI 1.1-6.2; p = 0.04). The prognostic significance of 3p loss and 10q loss persisted in multivariable regression models. For Group 4 tumours, chromosome 8 loss was strongly associated with improved survival, which was validated in a non-overlapping cohort (combined cohort HR 0.2, 95% CI 0.1-0.7; p = 0.007). Unlike in pediatric medulloblastoma, whole chromosome 11 loss in Group 4 and chromosome 14q loss in SHH was not associated with improved survival, where MYCN, GLI2 and MYC amplification were rare. In sum, we report unique subgroup-specific cytogenetic features of adult medulloblastoma, which are distinct from those in younger patients, and correlate with survival disparities. Our findings suggest that clinical trials that incorporate new strategies tailored to high-risk adult medulloblastoma patients are urgently needed.


Assuntos
Neoplasias Cerebelares/genética , Meduloblastoma/genética , Adolescente , Adulto , Biomarcadores Tumorais/genética , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Estudos de Coortes , Feminino , Humanos , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Intervalo Livre de Progressão , Fatores de Risco , Adulto Jovem
19.
Brain Behav Immun ; 97: 303-318, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302965

RESUMO

Exercise training has a profound impact on immunity, exerting a multitude of positive effects in indications such as immunosenescence, cancer, viral infections and inflammatory diseases. The immune, endocrine and central nervous systems work in a highly synergistic manner and it has become apparent that catecholamine signaling through leukocyte ß-adrenergic receptors (ß-ARs) is a key mechanism by which exercise mediates improvements in immune function to help mitigate numerous disease conditions. Central to this is the preferential mobilization and redistribution of effector lymphocytes with potent anti-viral and anti-tumor activity, their interaction with muscle-derived cytokines, and the effects of catecholamine signaling on mitochondrial biogenesis, immunometabolism and the resulting inflammatory response. Here, we review the impact of acute and chronic exercise on adrenergic regulation of immunity in the context of aging, cancer, viral infections and inflammatory disease. We also put forth our contention that exercise interventions designed to improve immunity, prevent disease and reduce inflammation should consider the catecholamine-AR signaling axis as a therapeutic target and ask whether or not the adrenergic signaling machinery can be 'trained' to improve immune responses to stress, disease or during the normal physiological process of aging. Finally, we discuss potential strategies to augment leukocyte catecholamine signaling to boost the effects of exercise on immunity in individuals with desensitized ß-ARs or limited exercise tolerance.


Assuntos
Adrenérgicos , Imunossenescência , Envelhecimento , Citocinas , Exercício Físico , Humanos
20.
Eur J Appl Physiol ; 121(10): 2657-2674, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34131799

RESUMO

Gastrointestinal symptoms are abundant among athletes engaging in endurance exercise, particularly when exercising in increased environmental temperatures, at higher intensities, or over extremely long distances. It is currently thought that prolonged ischemia, mechanical damage to the epithelial lining, and loss of epithelial barrier integrity are likely contributors of gastrointestinal (GI) distress during bouts of endurance exercise, but due to the many potential causes and sporadic nature of symptoms this phenomenon has proven difficult to study. In this review, we cover known factors that contribute to GI distress symptoms in athletes during exercise, while further attempting to identify novel avenues of future research to help elucidate mechanisms leading to symptomology. We explore the link between the intestinal microbiome, the integrity of the gut epithelia, and add detail on gut hormone and peptide secretion that could potentially contribute to GI distress symptoms in athletes. The influence of nutrition and dietary supplementation strategies are also detailed, where much research has opened up new ideas and potential mechanisms for understanding gut pathophysiology during exercise. The etiology of gastrointestinal symptoms during endurance exercise is multi-factorial with neuroendocrine, microbial, and nutritional factors likely contributing to specific, individualized symptoms. Recent work in previously unexplored areas of both microbiome and gut peptide secretion are pertinent areas for future work, and the numerous supplementation strategies explored to date have provided insight into physiological mechanisms that may be targetable to reduce the incidence and severity of gastrointestinal symptoms in athletes.


Assuntos
Terapia por Exercício , Exercício Físico/fisiologia , Gastroenteropatias/terapia , Microbiota/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Resistência Física/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA