Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39036998

RESUMO

We present a new set of computational tools that enable accurate and widely applicable 3D segmentation of nuclei in various 3D digital organs. We have developed an approach for ground truth generation and iterative training of 3D nuclear segmentation models, which we applied to popular CellPose, PlantSeg and StarDist algorithms. We provide two high-quality models trained on plant nuclei that enable 3D segmentation of nuclei in datasets obtained from fixed or live samples, acquired from different plant and animal tissues, and stained with various nuclear stains or fluorescent protein-based nuclear reporters. We also share a diverse high-quality training dataset of about 10,000 nuclei. Furthermore, we advanced the MorphoGraphX analysis and visualization software by, among other things, providing a method for linking 3D segmented nuclei to their surrounding cells in 3D digital organs. We found that the nuclear-to-cell volume ratio varies between different ovule tissues and during the development of a tissue. Finally, we extended the PlantSeg 3D segmentation pipeline with a proofreading tool that uses 3D segmented nuclei as seeds to correct cell segmentation errors in difficult-to-segment tissues.


Assuntos
Núcleo Celular , Aprendizado Profundo , Imageamento Tridimensional , Software , Núcleo Celular/metabolismo , Imageamento Tridimensional/métodos , Animais , Algoritmos , Arabidopsis , Processamento de Imagem Assistida por Computador/métodos
2.
PLoS Biol ; 22(6): e3002662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870210

RESUMO

The polygonal shape of cells in proliferating epithelia is a result of the tensile forces of the cytoskeletal cortex and packing geometry set by the cell cycle. In the larval Drosophila epidermis, two cell populations, histoblasts and larval epithelial cells, compete for space as they grow on a limited body surface. They do so in the absence of cell divisions. We report a striking morphological transition of histoblasts during larval development, where they change from a tensed network configuration with straight cell outlines at the level of adherens junctions to a highly folded morphology. The apical surface of histoblasts shrinks while their growing adherens junctions fold, forming deep lobules. Volume increase of growing histoblasts is accommodated basally, compensating for the shrinking apical area. The folded geometry of apical junctions resembles elastic buckling, and we show that the imbalance between the shrinkage of the apical domain of histoblasts and the continuous growth of junctions triggers buckling. Our model is supported by laser dissections and optical tweezer experiments together with computer simulations. Our analysis pinpoints the ability of histoblasts to store mechanical energy to a much greater extent than most other epithelial cell types investigated so far, while retaining the ability to dissipate stress on the hours time scale. Finally, we propose a possible mechanism for size regulation of histoblast apical size through the lateral pressure of the epidermis, driven by the growth of cells on a limited surface. Buckling effectively compacts histoblasts at their apical plane and may serve to avoid physical harm to these adult epidermis precursors during larval life. Our work indicates that in growing nondividing cells, compressive forces, instead of tension, may drive cell morphology.


Assuntos
Epiderme , Larva , Morfogênese , Animais , Epiderme/metabolismo , Larva/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Células Epidérmicas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Epiteliais/metabolismo , Fenômenos Biomecânicos , Junções Aderentes/metabolismo , Forma Celular , Simulação por Computador , Drosophila/crescimento & desenvolvimento , Modelos Biológicos
3.
Plant J ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121182

RESUMO

The bilateral-to-radial symmetry transition occurring during the development of the Arabidopsis thaliana female reproductive organ (gynoecium) is a crucial biological process linked to plant fertilization and seed production. Despite its significance, the cellular mechanisms governing the establishment and breaking of radial symmetry at the gynoecium apex (style) remain unknown. To fill this gap, we employed quantitative confocal imaging coupled with MorphoGraphX analysis, in vivo and in vitro transcriptional experiments, and genetic analysis encompassing mutants in two bHLH transcription factors necessary and sufficient to promote transition to radial symmetry, SPATULA (SPT) and INDEHISCENT (IND). Here, we show that defects in style morphogenesis correlate with defects in cell-division orientation and rate. We showed that the SPT-mediated accumulation of auxin in the medial-apical cells undergoing symmetry transition is required to maintain cell-division-oriented perpendicular to the direction of organ growth (anticlinal, transversal cell division). In addition, SPT and IND promote the expression of specific core cell-cycle regulators, CYCLIN-D1;1 (CYC-D1;1) and CYC-D3;3, to support progression through the G1 phase of the cell cycle. This transcriptional regulation is repressed by auxin, thus forming an incoherent feed-forward loop mechanism. We propose that this mechanism fine-tunes cell division rate and orientation with the morphogenic signal provided by auxin, during patterning of radial symmetry at the style.

4.
Nat Plants ; 10(8): 1258-1266, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39060423

RESUMO

In most plant species, sepals-the outermost floral organs-provide a protective shield for reproductive organs. How the floral bud becomes sealed is unknown. In Arabidopsis, we identified a small region at the sepal tip that is markedly curved inward early on and remains curved even after anthesis. Through modelling and quantitative growth analysis, we find that this hook emerges from growth arrest at the tip at a stage when cortical microtubules align with growth-derived tensile stress. Depolymerizing microtubules specifically at young sepal tips hindered hook formation and resulted in open floral buds. Mutants with defective growth pattern at the tip failed to curve inwards, whereas mutants with enhanced alignment of cortical microtubules at the tip exhibited a stronger hook. We propose that floral buds are locked due to a stress-derived growth arrest event curving the sepal tip and forming a rigid hook early on during flower development.


Assuntos
Arabidopsis , Flores , Microtúbulos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Flores/genética , Flores/fisiologia , Microtúbulos/metabolismo , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
5.
Nat Commun ; 15(1): 5911, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003301

RESUMO

Robustness is the reproducible development of a phenotype despite stochastic noise. It often involves tradeoffs with other performance metrics, but the mechanisms underlying such tradeoffs were largely unknown. An Arabidopsis flower robustly develops four sepals from four precisely positioned auxin maxima. The development related myb-like 1 (drmy1) mutant generates noise in auxin signaling that disrupts robustness in sepal initiation. Here, we find that increased expression of CUP-SHAPED COTYLEDON1 (CUC1), a boundary specification transcription factor, in drmy1 underlies this loss of robustness. CUC1 surrounds and amplifies stochastic auxin noise in drmy1 to form variably positioned auxin maxima and sepal primordia. Removing CUC1 from drmy1 provides time for noisy auxin signaling to resolve into four precisely positioned auxin maxima, restoring robust sepal initiation. However, removing CUC1 decreases the intensity of auxin maxima and slows down sepal initiation. Thus, CUC1 increases morphogenesis speed but impairs robustness against auxin noise. Further, using a computational model, we find that the observed phenotype can be explained by the effect of CUC1 in repolarizing PIN FORMED1 (PIN1), a polar auxin transporter. Lastly, our model predicts that reducing global growth rate improves developmental robustness, which we validate experimentally. Thus, our study illustrates a tradeoff between speed and robustness during development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Fatores de Transcrição , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Transdução de Sinais , Mutação , Fenótipo , Plantas Geneticamente Modificadas
6.
Curr Biol ; 34(5): 1010-1022.e4, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38359820

RESUMO

Exploding seed pods of the common weed Cardamine hirsuta have the remarkable ability to launch seeds far from the plant. The energy for this explosion comes from tension that builds up in the fruit valves. Above a critical threshold, the fruit fractures along its dehiscence zone and the two valves coil explosively, ejecting the seeds. A common mechanism to generate tension is drying, causing tissues to shrink. However, this does not happen in C. hirsuta fruit. Instead, tension is produced by active contraction of growing exocarp cells in the outer layer of the fruit valves. Exactly how growth causes the exocarp tissue to contract and generate pulling force is unknown. Here we show that the reorientation of microtubules in the exocarp cell cortex changes the orientation of cellulose microfibrils in the cell wall and the consequent cellular growth pattern. We used mechanical modeling to show how tension emerges through growth due to the highly anisotropic orientation of load-bearing cellulose microfibrils and their effect on cell shape. By explicitly defining the cell wall as multi-layered in our model, we discovered that a cross-lamellate pattern of cellulose microfibrils further enhances the developing tension in growing cells. Therefore, the interplay of cell wall properties with turgor-driven growth enables the fruit exocarp to generate sufficient tension to power explosive seed dispersal.


Assuntos
Frutas , Sementes , Microtúbulos , Parede Celular , Celulose
7.
Curr Biol ; 34(3): 541-556.e15, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244542

RESUMO

How is time encoded into organ growth and morphogenesis? We address this question by investigating heteroblasty, where leaf development and form are modified with progressing plant age. By combining morphometric analyses, fate-mapping through live-imaging, computational analyses, and genetics, we identify age-dependent changes in cell-cycle-associated growth and histogenesis that underpin leaf heteroblasty. We show that in juvenile leaves, cell proliferation competence is rapidly released in a "proliferation burst" coupled with fast growth, whereas in adult leaves, proliferative growth is sustained for longer and at a slower rate. These effects are mediated by the SPL9 transcription factor in response to inputs from both shoot age and individual leaf maturation along the proximodistal axis. SPL9 acts by activating CyclinD3 family genes, which are sufficient to bypass the requirement for SPL9 in the control of leaf shape and in heteroblastic reprogramming of cellular growth. In conclusion, we have identified a mechanism that bridges across cell, tissue, and whole-organism scales by linking cell-cycle-associated growth control to age-dependent changes in organ geometry.


Assuntos
Folhas de Planta , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proliferação de Células , Divisão Celular , Morfogênese , Regulação da Expressão Gênica de Plantas
8.
medRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39108522

RESUMO

Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of eleven pediatric patients with DRE who had sEEG electrodes implanted for invasive monitoring, one of whom was previously reported. We extracted unamplified DNA from the trace brain tissue on each sEEG electrode and also performed whole-genome amplification for each sample. We extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep panel and exome sequencing on a subset of samples from each case and analysis for potentially clinically relevant candidate germline and mosaic variants. We validated candidate mosaic variants using amplicon sequencing and assessed the variant allele fraction (VAF) in amplified and unamplified electrode-derived DNA and across electrodes. We extracted DNA from >150 individual electrodes from 11 individuals and obtained higher concentrations of whole-genome amplified vs unamplified DNA. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified samples but significantly more called mosaic variants in amplified samples. In addition to the mosaic PIK3CA variant detected in a previously reported case from our group, we identified and validated four potentially clinically relevant mosaic variants in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. The variants were detected in both amplified and unamplified electrode-derived DNA, with higher VAFs observed in DNA from electrodes in closest proximity to the electrical seizure focus in some cases. This study demonstrates that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy and in both amplified and unamplified electrode-derived DNA samples. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology, and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with DRE as part of the surgical evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA