Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(4): e0173921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908447

RESUMO

Two strains of Middle East respiratory syndrome coronavirus (MERS-CoV), England 1 and Erasmus Medical Centre/2012 (EMC/2012), were used to challenge common marmosets (Callithrix jacchus) by three routes of infection: aerosol, oral, and intranasal. Animals challenged by the intranasal and aerosol routes presented with mild, transient disease, while those challenged by the oral route presented with a subclinical immunological response. Animals challenged with MERS-CoV strain EMC/2012 by the aerosol route responded with primary and/or secondary pyrexia. Marmosets had minimal to mild multifocal interstitial pneumonia, with the greatest relative severity being observed in animals challenged by the aerosol route. Viable virus was isolated from the host in throat swabs and lung tissue. The transient disease described is consistent with a successful host response and was characterized by the upregulation of macrophage and neutrophil function observed in all animals at the time of euthanasia. IMPORTANCE Middle East respiratory syndrome is caused by a human coronavirus, MERS-CoV, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Humans typically exhibit fever, cough, shortness of breath, gastrointestinal issues, and breathing difficulties, which can lead to pneumonia and/or renal complications. This emerging disease resulted in the first human lethal cases in 2012 and has a case fatality rate of approximately 36%. Consequently, there is a need for medical countermeasures and appropriate animal models for their assessment. This work has demonstrated the requirement for higher concentrations of virus to cause overt disease. Challenge by the aerosol, intranasal, and oral routes resulted in no or mild disease, but all animals had an immunological response. This shows that an appropriate early immunological response is able to control the disease.


Assuntos
COVID-19/metabolismo , Modelos Animais de Doenças , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/metabolismo , Animais , Callithrix , Humanos
2.
J Gen Virol ; 102(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891534

RESUMO

A small-scale study with Mosi-guard Natural spray, an insect repellent containing Citriodiol, was performed to determine if it has virucidal activity against SARS-CoV-2. A liquid test examined the activity of the insect repellent and the individual components for virucidal activity. A surface contact test looked at the activity of the insect repellent when impregnated on a latex surface as a synthetic skin for potential topical prophylactic application. Both Mosi-guard Natural spray and Citriodiol, as well as other components of the repellent, had virucidal activity in the liquid contact test. On a latex surface used to simulate treated skin, the titre of SARS-CoV-2 was less over time on the Mosi-guard Natural-treated surface but virus was still recovered.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Repelentes de Insetos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Humanos , Extratos Vegetais/uso terapêutico
3.
PLoS Comput Biol ; 16(11): e1008375, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137116

RESUMO

Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola virus modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola virus infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.


Assuntos
Ebolavirus/fisiologia , Modelos Biológicos , Replicação Viral/fisiologia , Animais , Teorema de Bayes , Chlorocebus aethiops , Biologia Computacional , Simulação por Computador , Ebolavirus/genética , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Técnicas In Vitro , Cinética , Cadeias de Markov , Método de Monte Carlo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Carga Viral/fisiologia
4.
J Gen Virol ; 100(6): 911-912, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021739

RESUMO

Members of the family Filoviridae produce variously shaped, often filamentous, enveloped virions containing linear non-segmented, negative-sense RNA genomes of 15-19 kb. Several filoviruses (e.g., Ebola virus) are pathogenic for humans and are highly virulent. Several filoviruses infect bats (e.g., Marburg virus), whereas the hosts of most other filoviruses are unknown. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on Filoviridae, which is available at www.ictv.global/report/filoviridae.


Assuntos
Filoviridae/classificação , Animais , Filoviridae/genética , Genoma Viral/genética , Humanos , RNA Viral/genética
5.
Emerg Infect Dis ; 24(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29261093

RESUMO

Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.


Assuntos
Desinfetantes/farmacologia , Ebolavirus/efeitos dos fármacos , Clareadores/farmacologia , Células Cultivadas/virologia , Teste em Amostras de Sangue Seco , Humanos , Laboratórios , Ácido Peracético/farmacologia
6.
J Infect Dis ; 214(suppl 3): S268-S274, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27471321

RESUMO

Ebola virus Makona (EBOV-Makona; from the 2013-2016 West Africa outbreak) shows decreased virulence in an immune-deficient mouse model, compared with a strain from 1976. Unlike other filoviruses tested, EBOV-Makona may be slightly more virulent by the aerosol route than by the injected route, as 2 mice died following aerosol exposure, compared with no mortality among mice that received intraperitoneal injection of equivalent or higher doses. Although most mice did not succumb to infection, the detection of an immunoglobulin G antibody response along with observed clinical signs suggest that the mice were infected but able to clear the infection and recover. We hypothesize that this may be due to the growth rates and kinetics of the virus, which appear slower than that for other filoviruses and consequently give more time for an immune response that results in clearance of the virus. In this instance, the immune-deficient mouse model is unlikely to be appropriate for testing medical countermeasures against this EBOV-Makona stock but may provide insight into pathogenesis and the immune response to virus.


Assuntos
Anticorpos Antivirais/sangue , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Imunoglobulina G/sangue , Aerossóis , Animais , Modelos Animais de Doenças , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/imunologia , Doença pelo Vírus Ebola/patologia , Humanos , Camundongos
7.
J Infect Dis ; 212 Suppl 2: S336-45, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209682

RESUMO

Ebola virus (EBOV) causes a highly infectious and lethal hemorrhagic fever in primates with high fatality rates during outbreaks and EBOV may be exploited as a potential biothreat pathogen. There is therefore a need to develop and license appropriate medical countermeasures against this virus. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess vaccines or therapies against EBOV disease (EVD), initial susceptibility, lethality and pathogenesis studies were performed. Low doses of EBOV-Kikwit, between 4 and 27 times the 50% tissue culture infectious dose, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to EVD between 6 and 8 days after challenge. Typical signs of EVD were observed. Pathogenesis studies revealed that virus was isolated from the lungs of animals beginning on day 3 after challenge and from the liver, spleen and blood beginning on day 5. The most striking features were observed in animals that succumbed to infection, including high viral titers in all organs, increased levels of liver function enzymes and blood clotting times, decreased levels of platelets, multifocal moderate to severe hepatitis, and perivascular edema.


Assuntos
Callithrix/virologia , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Doenças dos Macacos/virologia , Infecções Respiratórias/virologia , Animais , Callithrix/imunologia , Modelos Animais de Doenças , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/patologia , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/patologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/patologia , Baço/imunologia , Baço/patologia , Baço/virologia , Carga Viral/imunologia
8.
J Clin Microbiol ; 53(10): 3148-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26179307

RESUMO

Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples.


Assuntos
Soluções Tampão , Desinfetantes/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Etanol , Viabilidade Microbiana/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos , Animais , Sangue/virologia , Callithrix , Camundongos
9.
Int J Exp Pathol ; 95(6): 378-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25477002

RESUMO

Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Mormo/microbiologia , Mormo/patologia , Melioidose/microbiologia , Melioidose/patologia , Animais , Antígenos de Bactérias , Carga Bacteriana , Callithrix , Modelos Animais de Doenças , Feminino , Mormo/mortalidade , Injeções Subcutâneas , Masculino , Melioidose/mortalidade , Índice de Gravidade de Doença
10.
Arch Virol ; 159(4): 821-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24122154

RESUMO

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group prepares proposals on the classification and nomenclature of filoviruses to reflect current knowledge or to correct disagreements with the International Code of Virus Classification and Nomenclature (ICVCN). In recent years, filovirus taxonomy has been corrected and updated, but parts of it remain controversial, and several topics remain to be debated. This article summarizes the decisions and discussion of the currently acting ICTV Filoviridae Study Group since its inauguration in January 2012.


Assuntos
Classificação/métodos , Filoviridae/classificação , Terminologia como Assunto , Humanos
11.
Arch Virol ; 159(5): 1229-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24190508

RESUMO

Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, (/)///-, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to "Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1" (with the suffix "rec" identifying the recombinant nature of the virus and "abc1" being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as "EBOV H.sap/COD/95/Kik-abc1") and abbreviations (such as "EBOV/Kik-abc1") could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. "EBOV" would suffice if only one EBOV strain/variant/isolate is addressed.


Assuntos
Filoviridae/classificação , Filoviridae/genética , Vírus Reordenados/classificação , Vírus Reordenados/genética , Genoma Viral
12.
Int J Exp Pathol ; 94(2): 156-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23441639

RESUMO

Marburg virus causes a highly infectious and lethal haemorrhagic fever in primates and may be exploited as a potential biothreat pathogen. To combat the infection and threat of Marburg haemorrhagic fever, there is a need to develop and license appropriate medical countermeasures. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess therapies against Marburg haemorrhagic fever, initial susceptibility, lethality and pathogenesis studies were performed. Low doses of virus, between 4 and 28 TCID50 , were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to disease between 8 and 11 days postchallenge. Typical signs of Marburg virus infection were observed including haemorrhaging and a transient rash. In pathogenesis studies, virus was isolated from the animals' lungs from day 3 postchallenge and from the liver, spleen and blood from day 5 postchallenge. Early signs of histopathology were apparent in the kidney and liver from day 3. The most striking features were observed in animals exhibiting severe clinical signs, which included high viral titres in all organs, with the highest levels in the blood, increased levels in liver function enzymes and blood clotting times, decreased levels in platelets, multifocal moderate-to-severe hepatitis and perivascular oedema.


Assuntos
Callithrix , Modelos Animais de Doenças , Exposição por Inalação , Doença do Vírus de Marburg/patologia , Marburgvirus/patogenicidade , Doenças dos Macacos/patologia , Animais , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Humanos , Rim/patologia , Rim/virologia , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Doença do Vírus de Marburg/virologia , Marburgvirus/isolamento & purificação , Doenças dos Macacos/virologia , Baço/patologia , Baço/virologia
13.
Viruses ; 14(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458510

RESUMO

During outbreaks of virus diseases, many variants may appear, some of which may be of concern. Stability in an aerosol of several Ebola virus and Marburg virus variants was investigated. Studies were performed measuring aerosol survival using the Goldberg drum but no significant difference in biological decay rates between variants was observed. In addition, historic data on virulence in a murine model of different Ebola virus variants were compared to newly presented data for Ebola virus Kikwit in the A129 Interferon alpha/beta receptor-deficient mouse model. Ebola virus Kikwit was less virulent than Ebola virus Ecran in our mouse model. The mouse model may be a useful tool for studying differences in virulence associated with different variants whereas aerosol stability studies may not need to be conducted beyond the species level.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Aerossóis , Animais , Modelos Animais de Doenças , Ebolavirus/genética , Camundongos , Virulência
14.
Viruses ; 14(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146863

RESUMO

Nipah virus is a relatively newly discovered emerging virus on the WHO list of priority pathogens which has the potential to cause outbreaks with high fatality rates. Whilst progress is being made in the development of animal models for evaluating vaccines and therapies, some of the more fundamental data on Nipah virus are lacking. We performed studies to generate novel information on the aerosol survival of Nipah virus and to look at the efficacy of two common disinfectants. We also performed studies to evaluate the inactivation of Nipah virus by using neutral buffered formalin. Nipah virus was relatively stable in a small particle (1-5 µm) aerosol in the dark, with it having a decay rate of 1.46%min-1. Sodium hypochlorite (at 10%) and ethanol (at 80%) reduced the titre of Nipah virus to undetectable levels. Nipah virus that was in tissue culture medium was also inactivated after 24 h in the presence of 10% formalin.


Assuntos
Desinfetantes , Infecções por Henipavirus , Vírus Nipah , Aerossóis , Animais , Desinfetantes/farmacologia , Desinfecção , Etanol , Formaldeído/farmacologia , Vírus Nipah/fisiologia , Hipoclorito de Sódio/farmacologia , Inativação de Vírus
15.
Viruses ; 14(8)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36016391

RESUMO

A transduced mouse model of SARS-CoV-2 infection was established using Balb/c mice. This was achieved through the adenovirus-vectored delivery of the hACE2 gene, to render the mice transiently susceptible to the virus. The model was characterised in terms of the dissemination of hACE2 receptor expression, the dissemination of three SARS-CoV-2 virus variants in vivo up to 10 days following challenge, the resulting histopathology and the clinical signs induced in the mice. In transduced mice, the infection was short-term, with a rapid loss in body weight starting at day 2 with maximum weight loss at day 4, followed by subsequent recovery until day 10. The induced expression of the hACE2 receptor was evident in the lungs, but, upon challenge, the SARS-CoV-2 virus disseminated beyond the lungs to spleen, liver and kidney, peaking at day 2 post infection. However, by day 10 post infection, the virus was undetectable. The lung histopathology was characterised by bronchial and alveolar inflammation, which was still present at day 10 post infection. Transduced mice had differential responses to viral variants ranking CVR-Glasgow 1 > Victoria-1 > England-2 isolates in terms of body weight loss. The transduced mouse model provides a consistent and manipulatable model of SARS-CoV-2 infection to screen viral variants for their relative virulence and possible interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Modelos Animais de Doenças , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/genética
16.
Microb Pathog ; 51(6): 471-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21798336

RESUMO

A variety of studies have implicated neutrophils and the rapid induction of cytokine in the host response in melioidosis. Here a BALB/c mouse model of infection with aerosolised Burkholderia pseudomallei K96243 has been used to understand the immune response to infection in this model and verify other infection models that show rapid growth of bacteria, colonisation of tissues and periphery, induction of cytokines and influx of neutrophils. Uniquely, this study has also determined the association of B. pseudomallei to host cells in vivo using flow cytometric techniques. Neutrophils were found to be the predominant cell-type exhibiting B. pseudomallei antigens during infection and it is likely that bacteria have been internalised. This data confirms that neutrophils are likely to play an important and active role in fighting infection with B. pseudomallei.


Assuntos
Burkholderia pseudomallei/imunologia , Melioidose/imunologia , Neutrófilos/imunologia , Infecções Respiratórias/imunologia , Animais , Modelos Animais de Doenças , Feminino , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções Respiratórias/microbiologia
17.
Front Cell Infect Microbiol ; 11: 716436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604108

RESUMO

Rapid and demonstrable inactivation of SARS-CoV-2 is crucial to ensure operator safety during high-throughput testing of clinical samples. The inactivation efficacy of SARS-CoV-2 was evaluated using commercially available lysis buffers from three viral RNA extraction kits used on two high-throughput (96-well) RNA extraction platforms (Qiagen QIAcube HT and the Thermo Fisher KingFisher Flex) in combination with thermal treatment. Buffer volumes and sample ratios were chosen for their optimised suitability for RNA extraction rather than inactivation efficacy and tested against a representative sample type: SARS-CoV-2 spiked into viral transport medium (VTM). A lysis buffer mix from the MagMAX Pathogen RNA/DNA kit (Thermo Fisher), used on the KingFisher Flex, which included guanidinium isothiocyanate (GITC), a detergent, and isopropanol, demonstrated a minimum inactivation efficacy of 1 × 105 tissue culture infectious dose (TCID)50/ml. Alternative lysis buffer mixes from the MagMAX Viral/Pathogen Nucleic Acid kit (Thermo Fisher) also used on the KingFisher Flex and from the QIAamp 96 Virus QIAcube HT Kit (Qiagen) used on the QIAcube HT (both of which contained GITC and a detergent) reduced titres by 1 × 104 TCID50/ml but did not completely inactivate the virus. Heat treatment alone (15 min, 68°C) did not completely inactivate the virus, demonstrating a reduction of 1 × 103 TCID50/ml. When inactivation methods included both heat treatment and addition of lysis buffer, all methods were shown to completely inactivate SARS-CoV-2 inactivation against the viral titres tested. Results are discussed in the context of the operation of a high-throughput diagnostic laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Manejo de Espécimes , Inativação de Vírus
19.
Emerg Microbes Infect ; 9(1): 1415-1417, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32496967

RESUMO

SARS-CoV-2, the causative agent of the COVID-19 pandemic, may be transmitted via airborne droplets or contact with surfaces onto which droplets have deposited. In this study, the ability of SARS-CoV-2 to survive in the dark, at two different relative humidity values and within artificial saliva, a clinically relevant matrix, was investigated. SARS-CoV-2 was found to be stable, in the dark, in a dynamic small particle aerosol under the four experimental conditions we tested and viable virus could still be detected after 90 minutes. The decay rate and half-life was determined and decay rates ranged from 0.4 to 2.27 % per minute and the half lives ranged from 30 to 177 minutes for the different conditions. This information can be used for advice and modelling and potential mitigation strategies.


Assuntos
Aerossóis/química , Betacoronavirus/crescimento & desenvolvimento , Infecções por Coronavirus/virologia , Meios de Cultura/química , Pneumonia Viral/virologia , Saliva Artificial/química , Salvia/virologia , Microbiologia do Ar , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/efeitos da radiação , COVID-19 , Infecções por Coronavirus/transmissão , Escuridão , Humanos , Umidade , Cinética , Pandemias , Pneumonia Viral/transmissão , SARS-CoV-2
20.
Pathogens ; 9(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825610

RESUMO

Knowledge of the survival and stability of a pathogen is important for understanding its risk, reducing its transmission, and establishing control measures. Lassa virus is endemic in West Africa, causes severe disease, and is an emerging pathogen of concern. Our study examined the survival of Lassa virus in blood and tissue culture media at two different temperatures. The stability of Lassa virus held within a small particle aerosol was also measured. In liquids, Lassa virus was found to decay more quickly at 30 °C compared to room temperature. Sealed samples protected from environmental desiccation were more stable than samples open to the environment. In a small particle aerosol, the decay rate of Lassa virus was determined at 2.69% per minute. This information can contribute to risk assessments and inform mitigation strategies in the event of an outbreak of Lassa virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA