Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949092

RESUMO

The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.

2.
Plant Physiol ; 195(3): 1866-1879, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38401532

RESUMO

Plant organs move throughout the diurnal cycle, changing leaf and petiole positions to balance light capture, leaf temperature, and water loss under dynamic environmental conditions. Upward movement of the petiole, called hyponasty, is one of several traits of the shade avoidance syndrome (SAS). SAS traits are elicited upon perception of vegetation shade signals such as far-red light (FR) and improve light capture in dense vegetation. Monitoring plant movement at a high temporal resolution allows studying functionality and molecular regulation of hyponasty. However, high temporal resolution imaging solutions are often very expensive, making this unavailable to many researchers. Here, we present a modular and low-cost imaging setup, based on small Raspberry Pi computers that can track leaf movements and elongation growth with high temporal resolution. We also developed an open-source, semiautomated image analysis pipeline. Using this setup, we followed responses to FR enrichment, light intensity, and their interactions. Tracking both elongation and the angle of the petiole, lamina, and entire leaf in Arabidopsis (Arabidopsis thaliana) revealed insight into R:FR sensitivities of leaf growth and movement dynamics and the interactions of R:FR with background light intensity. The detailed imaging options of this system allowed us to identify spatially separate bending points for petiole and lamina positioning of the leaf.


Assuntos
Arabidopsis , Luz , Folhas de Planta , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Movimento , Processamento de Imagem Assistida por Computador/métodos
3.
Theor Appl Genet ; 136(2): 28, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810666

RESUMO

Seeds are essential for plant reproduction, survival, and dispersal. Germination ability and successful establishment of young seedlings strongly depend on seed quality and on environmental factors such as nutrient availability. In tomato (Solanum lycopersicum) and many other species, seed quality and seedling establishment characteristics are determined by genetic variation, as well as the maternal environment in which the seeds develop and mature. The genetic contribution to variation in seed and seedling quality traits and environmental responsiveness can be estimated at transcriptome level in the dry seed by mapping genomic loci that affect gene expression (expression QTLs) in contrasting maternal environments. In this study, we applied RNA-sequencing to construct a linkage map and measure gene expression of seeds of a tomato recombinant inbred line (RIL) population derived from a cross between S. lycopersicum (cv. Moneymaker) and S. pimpinellifolium (G1.1554). The seeds matured on plants cultivated under different nutritional environments, i.e., on high phosphorus or low nitrogen. The obtained single-nucleotide polymorphisms (SNPs) were subsequently used to construct a genetic map. We show how the genetic landscape of plasticity in gene regulation in dry seeds is affected by the maternal nutrient environment. The combined information on natural genetic variation mediating (variation in) responsiveness to the environment may contribute to knowledge-based breeding programs aiming to develop crop cultivars that are resilient to stressful environments.


Assuntos
Solanum lycopersicum , Melhoramento Vegetal , Locos de Características Quantitativas , Mapeamento Cromossômico , Sementes/genética , Plântula/genética
4.
Chromosome Res ; 30(1): 5-24, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665365

RESUMO

Functional changes of cells upon developmental switches and in response to environmental cues are often reflected in nuclear phenotypes, showing distinctive chromatin states corresponding to transcriptional changes. Such characteristic nuclear shapes have been microscopically monitored and can be quantified after differential staining of euchromatin and heterochromatin domains. Here, we examined several nuclear parameters (size, DNA content, DNA density, chromatin compaction, relative heterochromatin fraction (RHF), and number of chromocenters) in relation to spatial distribution of genes and transposon elements (TEs), using standard 2D fluorescence microscopy. We provide nuclear profiles for different cell types and different accessions of Arabidopsis thaliana. A variable, yet significant, fraction of TEs was found outside chromocenters in all cell types, except for guard cells. The latter cell type features nuclei with the highest level of chromatin compaction, while their chromocenters seem to contain gene-rich regions. The highest number of parameter correlations was found in the accession Cvi, whereas Ler showed only few correlations. This may point at differences in phenotype robustness between accessions. The significantly high association of NOR chromocenters in accessions Ws and Cvi corresponds to their low RHF level.


Assuntos
Arabidopsis , Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Eucromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo
5.
Plant J ; 106(6): 1523-1540, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768644

RESUMO

Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound 'Heatin', containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.


Assuntos
Aminoidrolases/metabolismo , Arabidopsis/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Aminoidrolases/genética , Apomorfina/análogos & derivados , Apomorfina/farmacologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Herbicidas/farmacologia , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos , Estrutura Molecular , Picloram/farmacologia , Relação Estrutura-Atividade , Transcriptoma/efeitos dos fármacos
6.
Plant Physiol ; 187(3): 1250-1266, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618050

RESUMO

Plants detect neighboring competitors through a decrease in the ratio between red and far-red light (R:FR). This decreased R:FR is perceived by phytochrome photoreceptors and triggers shade avoidance responses such as shoot elongation and upward leaf movement (hyponasty). In addition to promoting elongation growth, low R:FR perception enhances plant susceptibility to pathogens: the growth-defense tradeoff. Although increased susceptibility in low R:FR has been studied for over a decade, the associated timing of molecular events is still unknown. Here, we studied the chronology of FR-induced susceptibility events in tomato (Solanum lycopersicum) plants pre-exposed to either white light (WL) or WL supplemented with FR light (WL+FR) prior to inoculation with the necrotrophic fungus Botrytis cinerea (B.c.). We monitored the leaf transcriptional changes over a 30-h time course upon infection and followed up with functional studies to identify mechanisms. We found that FR-induced susceptibility in tomato is linked to a general dampening of B.c.-responsive gene expression, and a delay in both pathogen recognition and jasmonic acid-mediated defense gene expression. In addition, we found that the supplemental FR-induced ethylene emissions affected plant immune responses under the WL+FR condition. This study improves our understanding of the growth-immunity tradeoff, while simultaneously providing leads to improve tomato resistance against pathogens in dense cropping systems.


Assuntos
Botrytis/fisiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fitocromo/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos da radiação , Solanum lycopersicum/imunologia , Suscetibilidade a Doenças , Luz , Solanum lycopersicum/microbiologia , Solanum lycopersicum/efeitos da radiação , Doenças das Plantas/microbiologia
7.
Heredity (Edinb) ; 128(5): 313-324, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383317

RESUMO

Most ectotherms obey the temperature-size rule, meaning they grow larger in a colder environment. This raises the question of how the interplay between genes and temperature affects the body size of ectotherms. Despite the growing body of literature on the physiological life-history and molecular genetic mechanism underlying the temperature-size rule, the overall genetic architecture orchestrating this complex phenotype is not yet fully understood. One approach to identify genetic regulators of complex phenotypes is quantitative trait locus (QTL) mapping. Here, we explore the genetic architecture of body-size phenotypes, and plasticity of body-size phenotypes at different temperatures using Caenorhabditis elegans as a model ectotherm. We used 40 recombinant inbred lines (RILs) derived from N2 and CB4856, which were reared at four different temperatures (16, 20, 24, and 26 °C) and measured at two developmental stages (L4 and adult). The animals were measured for body length, width at vulva, body volume, length/width ratio, and seven other body-size traits. The genetically diverse RILs varied in their body-size phenotypes with heritabilities ranging from 0.0 to 0.99. We detected 18 QTL underlying the body-size traits across all treatment combinations, with the majority clustering on Chromosome X. We hypothesize that the Chromosome X QTL could result from a known pleiotropic regulator-npr-1-known to affect the body size of C. elegans through behavioral changes. We also found five plasticity QTL of body-size traits where three colocalized with body-size QTL. In conclusion, our findings shed more light on multiple loci affecting body-size plasticity and the possibility of co-regulation of traits and traits plasticity by the same loci under different environments.


Assuntos
Caenorhabditis elegans , Locos de Características Quantitativas , Animais , Tamanho Corporal/genética , Caenorhabditis elegans/genética , Feminino , Fenótipo , Temperatura
8.
Proc Natl Acad Sci U S A ; 116(50): 25343-25354, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767749

RESUMO

Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histonas/genética , Temperatura Alta , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ligação Proteica
9.
Genome Res ; 28(9): 1296-1308, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30108180

RESUMO

Metabolic homeostasis is sustained by complex biological networks that respond to nutrient availability. Genetic and environmental factors may disrupt this equilibrium, leading to metabolic disorders, including obesity and type 2 diabetes. To identify the genetic factors controlling metabolism, we performed quantitative genetic analysis using a population of 199 recombinant inbred lines (RILs) in the nematode Caenorhabditis elegans We focused on the genomic regions that control metabolite levels by measuring fatty acid (FA) and amino acid (AA) composition in the RILs using targeted metabolomics. The genetically diverse RILs showed a large variation in their FA and AA levels with a heritability ranging from 32% to 82%. We detected strongly co-correlated metabolite clusters and 36 significant metabolite quantitative trait loci (mQTL). We focused on mQTL displaying highly significant linkage and heritability, including an mQTL for the FA C14:1 on Chromosome I, and another mQTL for the FA C18:2 on Chromosome IV. Using introgression lines (ILs), we were able to narrow down both mQTL to a 1.4-Mbp and a 3.6-Mbp region, respectively. RNAi-based screening focusing on the Chromosome I mQTL identified several candidate genes for the C14:1 mQTL, including lagr-1, Y87G2A.2, nhr-265, nhr-276, and nhr-81 Overall, this systems approach provides us with a powerful platform to study the genetic basis of C. elegans metabolism. Furthermore, it allows us to investigate interventions such as nutrients and stresses that maintain or disturb the regulatory network controlling metabolic homeostasis, and identify gene-by-environment interactions.


Assuntos
Aminoácidos/genética , Caenorhabditis elegans/genética , Ácidos Graxos/genética , Polimorfismo Genético , Locos de Características Quantitativas , Aminoácidos/metabolismo , Animais , Ácidos Graxos/metabolismo , Metaboloma/genética
10.
Plant Cell Environ ; 43(8): 1973-1988, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32419153

RESUMO

Seed quality and seedling establishment are the most important factors affecting successful crop development. They depend on the genetic background and are acquired during seed maturation and therefor, affected by the maternal environment under which the seeds develop. There is little knowledge about the genetic and environmental factors that affect seed quality and seedling establishment. The aim of this study is to identify the loci and possible molecular mechanisms involved in acquisition of seed quality and how these are controlled by adverse maternal conditions. For this, we used a tomato recombinant inbred line (RIL) population consisting of 100 lines which were grown under two different nutritional environmental conditions, high phosphate and low nitrate. Most of the seed germination traits such as maximum germination percentage (Gmax ), germination rate (t50 ) and uniformity (U8416 ) showed ample variation between genotypes and under different germination conditions. This phenotypic variation leads to identification of quantitative trait loci (QTLs) which were dependent on genetic factors, but also on the interaction with the maternal environment (QTL × E). Further studies of these QTLs may ultimately help to predict the effect of different maternal environmental conditions on seed quality and seedling establishment which will be very useful to improve the production of high-performance seeds.


Assuntos
Locos de Características Quantitativas , Plântula/genética , Sementes/genética , Solanum lycopersicum/genética , Interação Gene-Ambiente , Genótipo , Germinação/genética , Solanum lycopersicum/fisiologia , Nitratos/metabolismo , Fosfatos/metabolismo
11.
BMC Biol ; 17(1): 102, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822273

RESUMO

BACKGROUND: The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge. RESULTS: Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress. CONCLUSION: Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.


Assuntos
Caenorhabditis elegans/fisiologia , Temperatura Alta , Termotolerância , Transcriptoma/fisiologia , Animais , Caenorhabditis elegans/genética
12.
BMC Biol ; 17(1): 24, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866929

RESUMO

BACKGROUND: The nematode Caenorhabditis elegans has been extensively used to explore the relationships between complex traits, genotypes, and environments. Complex traits can vary across different genotypes of a species, and the genetic regulators of trait variation can be mapped on the genome using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) derived from genetically and phenotypically divergent parents. Most RILs have been derived from crossing two parents from globally distant locations. However, the genetic diversity between local C. elegans populations can be as diverse as between global populations and could thus provide means of identifying genetic variation associated with complex traits relevant on a broader scale. RESULTS: To investigate the effect of local genetic variation on heritable traits, we developed a new RIL population derived from 4 parental wild isolates collected from 2 closely located sites in France: Orsay and Santeuil. We crossed these 4 genetically diverse parental isolates to generate a population of 200 multi-parental RILs and used RNA-seq to obtain sequence polymorphisms identifying almost 9000 SNPs variable between the 4 genotypes with an average spacing of 11 kb, doubling the mapping resolution relative to currently available RIL panels for many loci. The SNPs were used to construct a genetic map to facilitate QTL analysis. We measured life history traits such as lifespan, stress resistance, developmental speed, and population growth in different environments, and found substantial variation for most traits. We detected multiple QTLs for most traits, including novel QTLs not found in previous QTL analysis, including those for lifespan and pathogen responses. This shows that recombining genetic variation across C. elegans populations that are in geographical close proximity provides ample variation for QTL mapping. CONCLUSION: Taken together, we show that using more parents than the classical two parental genotypes to construct a RIL population facilitates the detection of QTLs and that the use of wild isolates facilitates the detection of QTLs. The use of multi-parent RIL populations can further enhance our understanding of local adaptation and life history trade-offs.


Assuntos
Caenorhabditis elegans/genética , Características de História de Vida , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Ligação Genética , Genótipo , Organismos Geneticamente Modificados
13.
BMC Genomics ; 20(1): 232, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894116

RESUMO

BACKGROUND: Accumulation of protein aggregates are a major hallmark of progressive neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Transgenic Caenorhabditis elegans nematodes expressing the human synaptic protein α-synuclein in body wall muscle show inclusions of aggregated protein, which affects similar genetic pathways as in humans. It is not however known how the effects of α-synuclein expression in C. elegans differs among genetic backgrounds. Here, we compared gene expression patterns and investigated the phenotypic consequences of transgenic α-synuclein expression in five different C. elegans genetic backgrounds. RESULTS: Transcriptome analysis indicates that α-synuclein expression effects pathways associated with nutrient storage, lipid transportation and ion exchange and that effects vary depending on the genetic background. These gene expression changes predict that a range of phenotypes will be affected by α-synuclein expression. We confirm this, showing that α-synuclein expression delayed development, reduced lifespan, increased rate of matricidal hatching, and slows pharyngeal pumping. Critically, these phenotypic effects depend on the genetic background and coincide with the core changes in gene expression. CONCLUSIONS: Together, our results show genotype-specific effects and core alterations in both gene expression and in phenotype in response to α-synuclein expression. We conclude that the effects of α-synuclein expression are substantially modified by the genetic background, illustrating that genetic background needs to be considered in C. elegans models of neurodegenerative disease.


Assuntos
Caenorhabditis elegans/genética , Fenótipo , Transcrição Gênica , alfa-Sinucleína/genética , Animais , Caenorhabditis elegans/efeitos dos fármacos , Expressão Gênica , Perfilação da Expressão Gênica , alfa-Sinucleína/toxicidade
14.
Environ Microbiol ; 21(4): 1356-1368, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30803145

RESUMO

We assembled communities of bacteria and exposed them to different nutrient concentrations with or without predation by protists. Taxa that were rare in the field were less abundant at low nutrient concentrations than common taxa, independent of predation. However, some taxa that were rare in the field became highly abundant in the assembled communities, especially under ample nutrient availability. This high abundance points at a possible competitive advantage of some rare bacterial taxa under nutrient-rich conditions. In contrast, the abundance of most rare bacterial taxa decreased at low resource availability. Since low resource availability will be the prevailing situation in most soils, our data suggests that under those conditions poor competitiveness for limiting resources may contribute to bacterial rarity. Interestingly, taxa that were rare in the field and most successful under predator-free conditions in the lab also tended to be more reduced by predation than common taxa. This suggests that predation contributes to rarity of bacterial taxa in the field. We further discuss whether there may be a trade-off between competitiveness and predation resistance. The substantial variability among taxa in their responses to competition and predation suggests that other factors, for example abiotic conditions and dispersal ability, also influence the local abundance of soil bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos , Ecossistema , Microbiologia do Solo , Solo/parasitologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Eucariotos/metabolismo , Nutrientes/farmacologia , Densidade Demográfica
15.
J Exp Bot ; 70(10): 2905-2918, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30828721

RESUMO

Seed and seedling traits are affected by the conditions of the maternal environment, such as light, temperature, and nutrient availability. In this study, we have investigated whether different maternally applied nitrate and phosphate concentrations affect the seed and seedling performance of two closely related tomato species: Solanum lycopersicum cv. Money maker and Solanum pimpinellifolium accession CGN14498. We observed large differences for seed and seedling traits between the two species. Additionally, we have shown that for nitrate most of the seed and seedling traits were significantly affected by genotype-environment interactions (G×E). The effect of the maternal environment was clearly visible in the primary metabolites of the dry seeds. For example, we could show that the amount of γ-aminobutyric acid (GABA) in Money maker seeds was affected by the differences in the maternal environments and was positively correlated with seed germination under high temperature. Overall, compared with phosphate, nitrate had a larger effect on seed and seedling performance in tomato. In general, the different responses to the maternal environments of the two tomato species showed a major role for G×E in shaping seed and seedling traits.


Assuntos
Interação Gene-Ambiente , Solanum lycopersicum/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Nutrientes , Plântula/fisiologia , Sementes/fisiologia
16.
Plant J ; 89(6): 1225-1235, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27995664

RESUMO

Genetical genomics studies uncover genome-wide genetic interactions between genes and their transcriptional regulators. High-throughput measurement of gene expression in recombinant inbred line populations has enabled investigation of the genetic architecture of variation in gene expression. This has the potential to enrich our understanding of the molecular mechanisms affected by and underlying natural variation. Moreover, it contributes to the systems biology of natural variation, as a substantial number of experiments have resulted in a valuable amount of interconnectable phenotypic, molecular and genotypic data. A number of genetical genomics studies have been published for Arabidopsis thaliana, uncovering many expression quantitative trait loci (eQTLs). However, these complex data are not easily accessible to the plant research community, leaving most of the valuable genetic interactions unexplored as cross-analysis of these studies is a major effort. We address this problem with AraQTL (http://www.bioinformatics.nl/Ara QTL/), an easily accessible workbench and database for comparative analysis and meta-analysis of all published Arabidopsis eQTL datasets. AraQTL provides a workbench for comparing, re-using and extending upon the results of these experiments. For example, one can easily screen a physical region for specific local eQTLs that could harbour candidate genes for phenotypic QTLs, or detect gene-by-environment interactions by comparing eQTLs under different conditions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas/genética , Biologia de Sistemas , Transcrição Gênica/genética
18.
BMC Genomics ; 18(1): 500, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28662696

RESUMO

BACKGROUND: Cryptic genetic variation (CGV) is the hidden genetic variation that can be unlocked by perturbing normal conditions. CGV can drive the emergence of novel complex phenotypes through changes in gene expression. Although our theoretical understanding of CGV has thoroughly increased over the past decade, insight into polymorphic gene expression regulation underlying CGV is scarce. Here we investigated the transcriptional architecture of CGV in response to rapid temperature changes in the nematode Caenorhabditis elegans. We analyzed regulatory variation in gene expression (and mapped eQTL) across the course of a heat stress and recovery response in a recombinant inbred population. RESULTS: We measured gene expression over three temperature treatments: i) control, ii) heat stress, and iii) recovery from heat stress. Compared to control, exposure to heat stress affected the transcription of 3305 genes, whereas 942 were affected in recovering animals. These affected genes were mainly involved in metabolism and reproduction. The gene expression pattern in recovering animals resembled both the control and the heat-stress treatment. We mapped eQTL using the genetic variation of the recombinant inbred population and detected 2626 genes with an eQTL in the heat-stress treatment, 1797 in the control, and 1880 in the recovery. The cis-eQTL were highly shared across treatments. A considerable fraction of the trans-eQTL (40-57%) mapped to 19 treatment specific trans-bands. In contrast to cis-eQTL, trans-eQTL were highly environment specific and thus cryptic. Approximately 67% of the trans-eQTL were only induced in a single treatment, with heat-stress showing the most unique trans-eQTL. CONCLUSIONS: These results illustrate the highly dynamic pattern of CGV across three different environmental conditions that can be evoked by a stress response over a relatively short time-span (2 h) and that CGV is mainly determined by response related trans regulatory eQTL.


Assuntos
Caenorhabditis elegans/genética , Variação Genética , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Transcrição Gênica
19.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38015660

RESUMO

Regulation of gene expression plays a crucial role in developmental processes and adaptation to changing environments. expression quantitative trait locus (eQTL) mapping is a technique used to study the genetic regulation of gene expression using the transcriptomes of recombinant inbred lines (RILs). Typically, the age of the inbred lines at the time of RNA sampling is carefully controlled. This is necessary because the developmental process causes changes in gene expression, complicating the interpretation of eQTL mapping experiments. However, due to genetics and variation in ambient micro-environments, organisms can differ in their "developmental age," even if they are of the same chronological age. As a result, eQTL patterns are affected by developmental variation in gene expression. The model organism Caenorhabditis elegans is particularly suited for studying the effect of developmental variation on eQTL mapping patterns. In a span of days, C. elegans transitions from embryo through 4 larval stages to adult while undergoing massive changes to its transcriptome. Here, we use C. elegans to investigate the effect of developmental age variation on eQTL patterns and present a normalization procedure. We used dynamical eQTL mapping, which includes the developmental age as a cofactor, to separate the variation in development from genotypic variation and explain variation in gene expression levels. We compare classical single marker eQTL mapping and dynamical eQTL mapping using RNA-seq data of ∼200 multi-parental RILs of C. elegans. The results show that (1) many eQTLs are caused by developmental variation, (2) most trans-bands are developmental QTLs, and (3) dynamical eQTL mapping detects additional eQTLs not found with classical eQTL mapping. We recommend that correction for variation in developmental age should be strongly considered in eQTL mapping studies given the large impact of processes like development on the transcriptome.


Assuntos
Caenorhabditis elegans , Locos de Características Quantitativas , Animais , Caenorhabditis elegans/genética , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica , Genótipo
20.
Nat Commun ; 15(1): 3373, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643272

RESUMO

Metagenomic analysis typically includes read-based taxonomic profiling, assembly, and binning of metagenome-assembled genomes (MAGs). Here we integrate these steps in Read Annotation Tool (RAT), which uses robust taxonomic signals from MAGs and contigs to enhance read annotation. RAT reconstructs taxonomic profiles with high precision and sensitivity, outperforming other state-of-the-art tools. In high-diversity groundwater samples, RAT annotates a large fraction of the metagenomic reads, calling novel taxa at the appropriate, sometimes high taxonomic ranks. Thus, RAT integrative profiling provides an accurate and comprehensive view of the microbiome from shotgun metagenomics data. The package of Contig Annotation Tool (CAT), Bin Annotation Tool (BAT), and RAT is available at https://github.com/MGXlab/CAT_pack (from CAT pack v6.0). The CAT pack now also supports Genome Taxonomy Database (GTDB) annotations.


Assuntos
Metagenoma , Microbiota , Metagenoma/genética , Software , Algoritmos , Microbiota/genética , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA