Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587391

RESUMO

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Assuntos
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacologia , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Cloroquina/farmacologia , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Quinolinas/farmacologia , Concentração Inibidora 50 , Humanos , Testes de Sensibilidade Parasitária
2.
J Infect Dis ; 227(10): 1121-1126, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36478252

RESUMO

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine, and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.


Assuntos
Antimaláricos , Plasmodium cynomolgi , Mefloquina/farmacologia , Antimaláricos/farmacologia , Cloroquina/farmacologia , Plasmodium vivax/genética , Resistência a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum
3.
Malar J ; 21(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983529

RESUMO

BACKGROUND: Genotyping of the three Plasmodium falciparum polymorphic genes, msp1, msp2 and glurp, has been adopted as a standard strategy to distinguish recrudescence from new infection in drug efficacy clinical trials. However, the suitability of a particular gene is compromised in areas where its allelic variants distribution is significantly skewed, a phenomenon that might occur in isolated parasite populations or in areas of very low transmission. Moreover, observation of amplification bias has diminished the value of glurp as a marker. METHODS: The suitability of the polymorphic P. falciparum histidine-rich protein 2 (pfhrp2) gene was assessed to serve as an alternative marker using a PCR-sequencing or a PCR-RFLP protocol for genotyping of samples in drug efficacy clinical trials. The value of pfhrp2 was validated by side-by-side analyses of 5 admission-recrudescence sample pairs from Yemeni malaria patients. RESULTS: The outcome of the single pfhrp2 gene discrimination analysis has been found consistent with msp1, msp2 and glurp pool genotyping analysis for the differentiation of recrudescence from new infection. CONCLUSION: The findings suggest that under the appropriate circumstances, pfhrp2 can serve as an additional molecular marker for monitoring anti-malarials efficacy. However, its use is restricted to endemic areas where only a minority of P. falciparum parasites lack the pfhrp2 gene.


Assuntos
Antígenos de Protozoários/análise , Antimaláricos/efeitos adversos , Plasmodium falciparum/genética , Proteínas de Protozoários/análise , Marcadores Genéticos , Genótipo , Humanos , Malária Falciparum/prevenção & controle
4.
PLoS Med ; 18(4): e1003591, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901169

RESUMO

Jean-Marc Chavatte and Georges Snounou discuss research involving controlled malaria infections.


Assuntos
Controle de Doenças Transmissíveis/estatística & dados numéricos , Malária/parasitologia , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-33077656

RESUMO

For a long while, 8-aminoquinoline compounds have been the only therapeutic agents against latent hepatic malaria parasites. These have poor activity against the blood-stage plasmodia causing acute malaria and must be used in conjunction with partner blood schizontocidal agents. We examined the impacts of one such agent, chloroquine, upon the activity of primaquine, an 8-aminoquinoline, against hepatic stages of Plasmodium cynomolgi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium falciparum within several ex vivo systems-primary hepatocytes of Macaca fascicularis, primary human hepatocytes, and stably transformed human hepatocarcinoma cell line HepG2. Primaquine exposures to formed hepatic schizonts and hypnozoites of P. cynomolgi in primary simian hepatocytes exhibited similar 50% inhibitory concentration (IC50) values near 0.4 µM, whereas chloroquine in the same system exhibited no inhibitory activities. Combining chloroquine and primaquine in this system decreased the observed primaquine IC50 for all parasite forms in a chloroquine dose-dependent manner by an average of 18-fold. Chloroquine also decreased the primaquine IC50 against hepatic P. falciparum in primary human hepatocytes, P. berghei in simian primary hepatocytes, and P. yoelii in primary human hepatocytes. Chloroquine had no impact on primaquine IC50 against P. yoelii in HepG2 cells and, likewise, had no impact on the IC50 of atovaquone (hepatic schizontocide) against P. falciparum in human hepatocytes. We describe important sources of variability in the potentiation of primaquine activity by chloroquine in these systems. Chloroquine potentiated primaquine activity against hepatic forms of several plasmodia. We conclude that chloroquine specifically potentiated 8-aminoquinoline activities against active and dormant hepatic-stage plasmodia in normal primary hepatocytes but not in a hepatocarcinoma cell line.


Assuntos
Antimaláricos , Malária , Plasmodium , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Malária/tratamento farmacológico , Primaquina/farmacologia , Primaquina/uso terapêutico
6.
Blood ; 130(11): 1357-1363, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28698207

RESUMO

Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi-infected human reticulocytes that are strikingly similar to those observed for P vivax These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria.


Assuntos
Antígenos CD/metabolismo , Sistema do Grupo Sanguíneo Duffy/metabolismo , Plasmodium cynomolgi/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina/metabolismo , Reticulócitos/parasitologia , Tropismo , Zoonoses/parasitologia , Animais , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Macaca , Merozoítos/fisiologia , Plasmodium vivax/fisiologia , Reologia
7.
Emerg Infect Dis ; 24(3): 541-548, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29460743

RESUMO

An influx of immigrants is contributing to the reemergence of Plasmodium vivax malaria in Greece; 1 persistent focus of transmission is in Laconia, Pelopónnese. We genotyped archived blood samples from a substantial proportion of malaria cases recorded in Greece in 2009-2013 using 8 microsatellite markers and a PvMSP-3α gene fragment and plotted their spatiotemporal distribution. High parasite genetic diversity with low multiplicity of infection was observed. A subset of genetically identical/related parasites was restricted to 3 areas in migrants and Greek residents, with some persisting over 2 consecutive transmission periods. We identified 2 hitherto unsuspected additional foci of local transmission: Kardhítsa and Attica. Furthermore, this analysis indicates that several cases in migrants initially classified as imported malaria were actually locally acquired. This study shows the potential for P. vivax to reestablish transmission and counsels public health authorities about the need for vigilance to achieve or maintain sustainable malaria elimination.


Assuntos
Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium vivax/genética , Alelos , Variação Genética , Genoma de Protozoário , Genótipo , Geografia , Grécia/epidemiologia , História do Século XXI , Humanos , Malária Vivax/história , Malária Vivax/transmissão , Análise Espaço-Temporal
8.
Med Microbiol Immunol ; 207(5-6): 271-286, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29948091

RESUMO

Despite considerable efforts toward vaccine development over decades, there is no available effective vaccine against Plasmodium vivax. Thrombospondin-related adhesive protein of P. vivax (PvTRAP) is essential for sporozoite motility and invasions into mosquito's salivary gland and vertebrate's hepatocyte; hence, it is a promising target for pre-erythrocytic vaccine. In the current investigation, the role of antibodies and cellular immune responses induced by purified recombinant PvTRAP (rPvTRAP) delivered in three adjuvants, naloxone (NLX), CpG oligodeoxynucleotides ODN1826 (CpG-ODN), and 3-O-deacylated monophosphoryl lipid A (MPL), alone and in combination was evaluated in immunized C57BL/6 mice. The highest level and the avidity of anti-PvTRAP IgG (mean OD490nm 2.55), IgG2b (mean OD490nm 1.68), and IgG2c (mean OD490nm 1.466) were identified in the group received rPvTRA/NLX-MPL-CpG. This group also presented the highest IgG2c/IgG1 (2.58) and IgG2b/IgG1 (2.95) ratio when compared to all other groups, and among the adjuvant groups, the lowest IgG2c/IgG1 (1.86) and IgG2b/IgG1 (2.25) ratio was observed in mice receiving rPvTRAP/NLX. Mice receiving rPvTRAP/adjuvants induced significantly the higher levels of interferon gamma (IFN-γ), low level of detectable IL-10, and no detectable IL-4 production. The present result revealed that PvTRAP is immunogenic and its administration with CPG, MPL, and NLX in C57BL/6 mice induced Th1 immune response. Besides, the rPvTRAP delivery in the mixed formulation of those adjuvants had more potential to increase the level, avidity, and persistence of anti-TRAP antibodies. However, it warrants further assessment to test the blocking activity of the produced antibodies in immunized mice with different adjuvant formulations.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Lipídeo A/análogos & derivados , Vacinas Antimaláricas/imunologia , Naloxona/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas de Protozoários/imunologia , Células Th1/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Feminino , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Leucócitos Mononucleares/imunologia , Lipídeo A/administração & dosagem , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Camundongos Endogâmicos C57BL , Plasmodium vivax/imunologia , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
9.
Blood ; 125(8): 1314-24, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25414440

RESUMO

Plasmodium vivax merozoites only invade reticulocytes, a minor though heterogeneous population of red blood cell precursors that can be graded by levels of transferrin receptor (CD71) expression. The development of a protocol that allows sorting reticulocytes into defined developmental stages and a robust ex vivo P vivax invasion assay has made it possible for the first time to investigate the fine-scale invasion preference of P vivax merozoites. Surprisingly, it was the immature reticulocytes (CD71(+)) that are generally restricted to the bone marrow that were preferentially invaded, whereas older reticulocytes (CD71(-)), principally found in the peripheral blood, were rarely invaded. Invasion assays based on the CD71(+) reticulocyte fraction revealed substantial postinvasion modification. Thus, 3 to 6 hours after invasion, the initially biomechanically rigid CD71(+) reticulocytes convert into a highly deformable CD71(-) infected red blood cell devoid of host reticular matter, a process that normally spans 24 hours for uninfected reticulocytes. Concurrent with these changes, clathrin pits disappear by 3 hours postinvasion, replaced by distinctive caveolae nanostructures. These 2 hitherto unsuspected features of P vivax invasion, a narrow preference for immature reticulocytes and a rapid remodeling of the host cell, provide important insights pertinent to the pathobiology of the P vivax infection.


Assuntos
Antígenos CD/metabolismo , Plasmodium vivax/crescimento & desenvolvimento , Receptores da Transferrina/metabolismo , Reticulócitos/fisiologia , Reticulócitos/parasitologia , Tropismo/fisiologia , Fenômenos Biomecânicos , Células Cultivadas , Deformação Eritrocítica , Humanos , Malária Vivax/sangue , Malária Vivax/parasitologia , Reticulócitos/metabolismo
10.
Cell Microbiol ; 18(12): 1739-1750, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27130708

RESUMO

The development of an effective malaria vaccine has remained elusive even until today. This is because of our incomplete understanding of the immune mechanisms that confer and/or correlate with protection. Human volunteers have been protected experimentally from a subsequent challenge by immunization with Plasmodium falciparum sporozoites under drug cover. Here, we demonstrate that sera from the protected individuals contain neutralizing antibodies against the pre-erythrocytic stage. To identify the antigen(s) recognized by these antibodies, a newly developed library of P. falciparum antigens was screened with the neutralizing sera. Antibodies from protected individuals recognized a broad antigenic repertoire of which three antigens, PfMAEBL, PfTRAP and PfSEA1 were recognized by most protected individuals. As a proof of principle, we demonstrated that anti-PfMAEBL antibodies block liver stage development in human hepatocytes. Thus, these antigens identified are promising targets for vaccine development against malaria.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Antígenos de Protozoários/imunologia , Imunidade Humoral , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Antígenos de Protozoários/genética , Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Reações Cruzadas , Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/parasitologia , Humanos , Soros Imunes/química , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Biblioteca de Peptídeos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Esporozoítos/imunologia , Vacinação
11.
Malar J ; 16(1): 228, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558712

RESUMO

BACKGROUND: Relapse infections resulting from the activation hypnozoites produced by Plasmodium vivax and Plasmodium ovale represent an important obstacle to the successful control of these species. A single licensed drug, primaquine is available to eliminate these liver dormant forms. To date, investigations of vivax relapse infections have been few in number. RESULTS: Genotyping, based on polymorphic regions of two genes (Pvmsp1F3 and Pvcsp) and four microsatellite markers (MS3.27, MS3.502, MS6 and MS8), of 12 paired admission and relapse samples from P. vivax-infected patients were treated with primaquine, revealed that in eight of the parasite populations in the admission and relapse samples were homologous, and heterologous in the remaining four patients. The patients' CYP2D6 genotypes did not suggest that any were poor metabolisers of primaquine. Parasitaemia tended to be higher in the heterologous as compared to the homologous relapse episodes as was the IgG3 response. For the twelve pro- and anti-inflammatory cytokine levels measured for all samples, only those of IL-6 and IL-10 tended to be higher in patients with heterologous as compared to homologous relapses in both admission and relapse episodes. CONCLUSIONS: The data from this limited number of patients with confirmed relapse episodes mirror previous observations of a significant proportion of heterologous parasites in relapses of P. vivax infections in Thailand. Failure of the primaquine treatment that the patients received is unlikely to be due to poor drug metabolism, and could indicate the presence of P. vivax populations in Thailand with poor susceptibility to 8-aminoquinolines.


Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Primaquina/uso terapêutico , Adolescente , Adulto , Estudos de Coortes , Seguimentos , Genótipo , Humanos , Pessoa de Meia-Idade , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Recidiva , Tailândia , Adulto Jovem
12.
J Infect Dis ; 213(8): 1322-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26681777

RESUMO

BACKGROUND: Asymptomatic parasitemia is common even in areas of low seasonal malaria transmission, but the true proportion of the population infected has not been estimated previously because of the limited sensitivity of available detection methods. METHODS: Cross-sectional malaria surveys were conducted in areas of low seasonal transmission along the border between eastern Myanmar and northwestern Thailand and in western Cambodia. DNA was quantitated by an ultrasensitive polymerase chain reaction (uPCR) assay (limit of accurate detection, 22 parasites/mL) to characterize parasite density distributions for Plasmodium falciparum and Plasmodium vivax, and the proportions of undetected infections were imputed. RESULTS: The prevalence of asymptomatic malaria as determined by uPCR was 27.5% (1303 of 4740 people tested). Both P. vivax and P. falciparum density distributions were unimodal and log normal, with modal values well within the quantifiable range. The estimated proportions of all parasitemic individuals identified by uPCR were >70% among individuals infected with P. falciparum and >85% among those infected with P. vivax. Overall, 83% of infections were predicted to be P. vivax infections, 13% were predicted to be P. falciparum infections, and 4% were predicted to be mixed infections. Geometric mean parasite densities were similar; 5601 P. vivax parasites/mL and 5158 P. falciparum parasites/mL. CONCLUSIONS: This uPCR method identified most infected individuals in malaria-endemic areas. Malaria parasitemia persists in humans at levels that optimize the probability of generating transmissible gametocyte densities without causing illness.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Adolescente , Adulto , Sudeste Asiático/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Parasitemia/epidemiologia , Parasitemia/parasitologia , Prevalência , Adulto Jovem
13.
Emerg Infect Dis ; 22(8): 1371-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27433965

RESUMO

Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.


Assuntos
Variação Genética , Malária/veterinária , Doenças dos Macacos/parasitologia , Plasmodium knowlesi/genética , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Macaca , Malária/epidemiologia , Malária/parasitologia , Malásia/epidemiologia , Doenças dos Macacos/epidemiologia , RNA Ribossômico 18S/genética , Zoonoses
14.
Malar J ; 15: 75, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26858120

RESUMO

BACKGROUND: Knowledge of the population genetics and transmission dynamics of Plasmodium vivax is crucial in predicting the emergence of drug resistance, relapse pattern and novel parasite phenotypes, all of which are relevant to the control of vivax infections. The aim of this study was to analyse changes in the genetic diversity of P. vivax genes from field isolates collected at different times along the Thai-Myanmar border. METHODS: Two hundred and fifty-four P. vivax isolates collected during two periods 10 years apart along the Thai-Myanmar border were analysed. The parasites were genotyped by nested-PCR and PCR-RFLP targeting selected polymorphic loci of Pvmsp1, Pvmsp3α and Pvcsp genes. RESULTS: The total number of distinguishable allelic variants observed for Pvcsp, Pvmsp1, and Pvmsp3α was 17, 7 and 3, respectively. High genetic diversity was observed for Pvcsp (H E = 0.846) and Pvmsp1 (H E = 0.709). Of the 254 isolates, 4.3 and 14.6 % harboured mixed Pvmsp1 and Pvcsp genotypes with a mean multiplicity of infection (MOI) of 1.06 and 1.15, respectively. The overall frequency of multiple genotypes was 16.9 %. When the frequencies of allelic variants of each gene during the two distinct periods were analysed, significant differences were noted for Pvmsp1 (P = 0.018) and the Pvcsp (P = 0.033) allelic variants. CONCLUSION: Despite the low malaria transmission levels in Thailand, P. vivax population exhibit a relatively high degree of genetic diversity along the Thai-Myanmar border of Thailand, in particular for Pvmsp1 and Pvcsp, with indication of geographic and temporal variation in frequencies for some variants. These results are of relevance to monitoring the emergence of drug resistance and to the elaboration of measures to control vivax malaria.


Assuntos
Plasmodium vivax/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Feminino , Variação Genética/genética , Genótipo , Humanos , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/classificação , Reação em Cadeia da Polimerase , Tailândia , Adulto Jovem
15.
Malar J ; 15(1): 295, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27234587

RESUMO

BACKGROUND: In Yemen, artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been used as first-line treatment for uncomplicated falciparum malaria, which accounts for about 99 % of malaria cases. There is evidence that resistance to SP is increasing, with potential negative impact on efficacy, and in particular on curbing transmission. This study aims: (a) to evaluate the therapeutic efficacy of AS + SP treatment for uncomplicated falciparum malaria in Yemen; (b) to investigate the frequency of mutations in Plasmodium falciparum genes associated with resistance to AS (Kelch 13 propeller domain, pfK13) and SP (dihydrofolate reductase, pfdhfr, and dihydropteroate synthase, pfdhps); and (c) to assess the adequacy of this ACT to clear gametocytes. METHODS: A 28-day in vivo evaluation of the clinical and parasitological response to three-day course of AS + SP was carried out in two areas of high endemicity (Hodeidah and Al-Mahwit provinces, Tehama region) in Yemen according to standard WHO protocol 2009. Clinical and parasitological indices were monitored over a 28-day follow-up, and the outcome was PCR-corrected. The frequencies of mutations in the pfdhfr, pfdhps, and pfK13 genes were obtained by sequencing following amplification. RESULTS: Eighty-six patients completed the study, with a cure rate of 96.5 % (94.2 % PCR-uncorrected). Whereas four (4.7 %) patients still showed parasitaemia on day 2 post-treatment, all were found negative for asexual malaria stages on days 3 and 7. The efficacy of gametocyte clearance was poor (14.5, 42.5 and 86.0 % on days 7, 14 and 28, respectively), with gametocytes persisting throughout the study in some patients. All the isolates sequenced had the pfk13 propeller domain wild-type allele, and mutations associated with SP failure were observed only for pfdhfr with the double mutation (S108N + N51I) found in 65.4 % of the isolates sequenced. CONCLUSION: In Yemen, AS + SP therapy remains effective for the treatment of uncomplicated falciparum malaria. Mutations were not detected in pfk13 or pfdhps, though double mutations were observed for pfdhfr. The observed persistent gametocytaemia re-enforces calls to add a single dose primaquine to this ACT in order to minimizes the potential for transmission and enhance regional efforts to eliminate malaria.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Primaquina/uso terapêutico , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Adolescente , Adulto , Antimaláricos/farmacologia , Artemisininas/farmacologia , Artesunato , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Plasmodium falciparum/genética , Primaquina/farmacologia , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Resultado do Tratamento , Iêmen , Adulto Jovem
16.
Malar J ; 14: 454, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26577930

RESUMO

BACKGROUND: Plasmodium ovale, considered the rarest of the malaria parasites of humans, consists of two morphologically identical but genetically distinct sympatric species, Plasmodium ovale curtisi and Plasmodium ovale wallikeri. These parasites resemble morphologically to Plasmodium vivax with which they also share a tertian periodicity and the ability to cause relapses, making them easily misidentified as P. vivax. Plasmodium ovale infections are rarely reported, but given the likelihood of misidentification, their prevalence might be underestimated. METHODS: Morphological and molecular analysis of confirmed malaria cases admitted in Singapore in 2012-2014 detected nine imported P. ovale cases that had been misidentified as P. vivax. Since P. ovale had not been previously officially reported in Singapore, a retrospective analysis of available, frozen, archival blood samples was performed and returned two additional misidentified P. ovale cases in 2003 and 2006. These eleven P. ovale samples were characterized with respect to seven molecular markers (ssrRNA, Potra, Porbp2, Pog3p, dhfr-ts, cytb, cox1) used in recent studies to distinguish between the two sympatric species, and to a further three genes (tufa, clpC and asl). RESULTS: The morphological features of P. ovale and the differential diagnosis with P. vivax were reviewed and illustrated by microphotographs. The genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was assessed by ten molecular markers distributed across the three genomes of the parasite (Genbank KP050361-KP050470). The data obtained for seven of these markers were compared with those published and confirmed that both P. ovale species were present. This dimorphism was also confirmed for the first time on: (1) two genes from the apicoplast genome (tufA and clpC genes); and, (2) the asl gene that was used for phylogenetic analyses of other Plasmodium species, and that was found to harbour the highest number of dimorphic loci between the two P. ovale species. CONCLUSION: Misidentified P. ovale infections are reported for the first time among imported malaria cases in Singapore. Genetic dimorphism between P. ovale curtisi and P. ovale wallikeri was confirmed using markers from the parasites' three genomes. The apparent increase of imported P. ovale since 2012 (with yearly detection of cases) is puzzling. Given decrease in the overall number of malaria cases recorded in Singapore since 2010 the 'resurgence' of this neglected species raises public health concerns.


Assuntos
Malária/diagnóstico , Malária/parasitologia , Plasmodium ovale/genética , Plasmodium ovale/isolamento & purificação , DNA de Protozoário/química , DNA de Protozoário/genética , Genes de Protozoários , Variação Genética , Genótipo , Humanos , Dados de Sequência Molecular , Plasmodium ovale/citologia , Estudos Retrospectivos , Análise de Sequência de DNA , Singapura
17.
Malar J ; 14: 312, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26259952

RESUMO

BACKGROUND: A stenogamous colony of Anopheles cracens (A. dirus B) established 20 years ago in a Thai insectary proved susceptible to Plasmodium vivax. However, routine sporozoite production by feeding on field-collected blood samples has not been described. The setting-up of an A. cracens colony in an insectary on the Thai-Myanmar border and the process of using P. vivax field samples for the production of infectious sporozoites are described. METHODS: The colony was started in 2012 from egg batches that were sent from the Department of Parasitology, Faculty of Medicine, University of Chiang Mai, to the Shoklo Malaria Research Unit (SMRU), on wet filter paper in sealed Petri dishes. From May 2013 to December 2014, P. vivax-infected blood samples collected from patients seeking care at SMRU clinics were used for membrane feeding assays and sporozoite production. RESULTS: Mosquitoes were fed on blood samples from 55 patients, and for 38 (69 %) this led to the production sporozoites. The average number of sporozoites obtained per mosquito was 26,112 (range 328-79,310). Gametocytaemia was not correlated with mosquito infectiousness (p = 0.82), or with the number of the sporozoites produced (Spearman's ρ = -0.016, p = 0.905). Infectiousness did not vary with the date of collection or the age of the patient. Mosquito survival was not correlated with sporozoite load (Spearman's ρ = 0.179, p = 0.282). CONCLUSION: Consistent and routine P. vivax sporozoites production confirms that A. cracens is highly susceptible to P. vivax infection. Laboratory-bred colonies of this vector are suitable for experimental transmission protocols and thus constitute a valuable resource.


Assuntos
Animais de Laboratório , Anopheles , Pesquisa Biomédica , Plasmodium vivax/fisiologia , Esporozoítos/fisiologia , Animais , Animais de Laboratório/parasitologia , Animais de Laboratório/fisiologia , Anopheles/parasitologia , Anopheles/fisiologia , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Cruzamento , Feminino , Masculino
18.
Malar J ; 14: 319, 2015 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26275909

RESUMO

BACKGROUND: Resistance to the artemisinin derivatives in Plasmodium falciparum has emerged in Cambodia and is now spreading throughout South-East Asia. The rapid elimination of P. falciparum seems to be the only viable option to avoid a public health disaster but this is difficult because even in low transmission settings many residents have asymptomatic parasitaemias. METHODS: In response to a large number of malaria cases reported in three remote villages on the Thai-Myanmar border where malaria is endemic and the disease is seasonal, surveys were conducted using an ultra-sensitive qPCR assay (LOD 22 parasites per mL). In one of the villages where it was feasible, mass anti-malarial drug administration was proposed to the population as a potential solution, and this was adopted. RESULTS: In the three villages 204/356 (57.3 %), 212/385 (55.1 %) and 195/286 (68.2 %) of the resident populations were positive by qPCR (approximately one-third P. falciparum and two-thirds P. vivax). Of those positive for P. falciparum 62 % carried single point mutations in the P. falciparum kelch protein (a marker of artemisinin resistance). In one of the villages 217 of 674 inhabitants received at least one dose of dihydroartemisinin-piperaquine chemoprevention in June 2012, 155 (71.4 %) received two consecutive months, and 98 (45.2 %) received three treatment doses. The chemoprevention was generally well tolerated. The sub-microscopic reservoir of P. falciparum malaria was eliminated during the six-month follow-up period (prevalence fell from 7 to 0 %); P. vivax malaria persisted (prevalence fell from 35 to 8 %). From June to October 2012 (rainy season) the number of clinical episodes of P. falciparum was six times lower (46), than during the same period in the previous year (290). CONCLUSION: Mass drug administration with dihydroartemisinin-piperaquine may be an effective strategy to eliminate P. falciparum rapidly where multi-drug resistance is present.


Assuntos
Resistência a Múltiplos Medicamentos , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Adolescente , Adulto , Antimaláricos/farmacologia , Criança , Estudos Transversais , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Mianmar/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Tailândia/epidemiologia
19.
Malar J ; 14: 381, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424000

RESUMO

BACKGROUND: The importance of the submicroscopic reservoir of Plasmodium infections for malaria elimination depends on its size, which is generally considered small in low transmission settings. The precise estimation of this reservoir requires more sensitive parasite detection methods. The prevalence of asymptomatic, sub-microscopic malaria was assessed by a sensitive, high blood volume quantitative real-time polymerase chain reaction method in three countries of the Greater Mekong Sub-region. METHODS: Cross-sectional surveys were conducted in three villages in western Cambodia, four villages along the Thailand-Myanmar border and four villages in southwest Vietnam. Malaria parasitaemia was assessed by Plasmodium falciparum/pan malaria rapid diagnostic tests (RDTs), microscopy and a high volume ultra-sensitive real-time polymerase chain reaction (HVUSqPCR: limit of detection 22 parasites/mL). All villagers older than 6 months were invited to participate. RESULTS: A census before the surveys identified 7355 residents in the study villages. Parasite prevalence was 224/5008 (4 %) by RDT, 229/5111 (5 %) by microscopy, and 988/4975 (20 %) when assessed by HVUSqPCR. Of these 164 (3 %) were infected with P. falciparum, 357 (7 %) with Plasmodium vivax, 56 (1 %) with a mixed infection, and 411 (8 %) had parasite densities that were too low for species identification. A history of fever, male sex, and age of 15 years or older were independently associated with parasitaemia in a multivariate regression model stratified by site. CONCLUSION: Light microscopy and RDTs identified only a quarter of all parasitaemic participants. The asymptomatic Plasmodium reservoir is considerable, even in low transmission settings. Novel strategies are needed to eliminate this previously under recognized reservoir of malaria transmission.


Assuntos
Infecções Assintomáticas/epidemiologia , Malária/epidemiologia , Adolescente , Adulto , Sudeste Asiático/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Plasmodium falciparum , Plasmodium vivax , Adulto Jovem
20.
Mol Biol Evol ; 30(9): 2050-64, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23733143

RESUMO

Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.


Assuntos
Evolução Biológica , Variação Genética , Genoma Mitocondrial , Filogenia , Plasmodium vivax/classificação , América , Animais , Ásia , Sequência de Bases , Teorema de Bayes , Haplótipos , Humanos , Malária Vivax/parasitologia , Malária Vivax/transmissão , Oceania , Filogeografia , Plasmodium vivax/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA