Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(30): e2408109121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39028694

RESUMO

The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.


Assuntos
COVID-19 , Pulmão , Organoides , SARS-CoV-2 , Internalização do Vírus , Humanos , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Pulmão/virologia , Pulmão/imunologia , Pulmão/patologia , Organoides/virologia , Tratamento Farmacológico da COVID-19 , Células-Tronco Pluripotentes Induzidas/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Inflamação , Citocinas/metabolismo , Apoptose
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330827

RESUMO

There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2's activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/diagnóstico , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética
3.
Proc Natl Acad Sci U S A ; 117(49): 31177-31188, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33219123

RESUMO

A transplanted stem cell's engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell's "pathotropism." Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has been long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12-CXCR4 coupling. Alternatively, we chemically "mutated" CXCL12, creating a CXCR4 agonist that contained a strong pure binding motif linked to a signaling motif devoid of sequences responsible for synthetic functions. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL 12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-corrective enzyme mediated a therapeutic impact unachieved by cells alone. Such a "designer" cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., "inflammo-attraction").


Assuntos
Quimiocina CXCL12/genética , Neurônios/metabolismo , Ligação Proteica/genética , Receptores CXCR4/genética , Astrócitos/metabolismo , Astrócitos/patologia , Movimento Celular/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Células-Tronco Pluripotentes Induzidas , Inflamação/genética , Ligantes , Mutagênese/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Neurônios/patologia
4.
Mol Psychiatry ; 26(8): 4066-4084, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33235333

RESUMO

Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ácido Valproico , Animais , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mania , Camundongos , Ácido Valproico/farmacologia
5.
Clin Infect Dis ; 73(5): 919-924, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33624027

RESUMO

The acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has been a global public health challenge for several decades. The majority of HIV infection is caused by the human immunodeficiency virus type 1 (HIV-1), which enters and infects a host cell via the cell surface proteins of CD4 as the primary receptor, and chemokine receptors CXCR4 or CCR5 as the coreceptor-then undergoing replication using the cell's intracellular machinery. Whereas many drugs targeting CCR5-mediated entry or HIV-1 replication via reverse transcriptase or proteases have long been used clinically, agents targeting CXCR4 are yet to be advanced to clinical application. Here in this review we highlight some of the strategies for and progress made in the discovery of novel small molecules, peptides, and larger molecules that target CXCR4, and their future prospects for translation into the clinic as a new class of anti-HIV therapeutics.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Infecções por HIV/tratamento farmacológico , Humanos , Receptores CCR5 , Receptores CXCR4
6.
J Pediatr ; 216: 222-226, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471115

RESUMO

In comparing placental transfusion strategies, blood obtained from an umbilical cord that has been "milked" vs one in which clamping was simply delayed contains mesenchymal stromal cells in addition to solely hematopoietic stem cells, a composition more favorable for hematopoiesis, as suggested by its superior rescue of lethally irradiated bone marrow-depleted mice.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Sangue Fetal/citologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Constrição , Camundongos , Fatores de Tempo
7.
Pediatr Res ; 83(1-2): 191-204, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29019974

RESUMO

With translational stem cell biology and Regenerative Medicine (the field to which the former gave rise) now over a quarter century old, it is time to take stock of where we have been and where we are going. This editorial overview, which serves as an introduction to this special issue of Pediatric Research dedicated to these fields, reinforces the notion that stem cells are ultimately intrinsic parts of developmental biology, for which Pediatrics represents the clinical face. Although stem cells provide the cellular basis for a great deal of only recently recognized plasticity programmed into the developing and postdevelopmental organism, and although there is enormous promise in harnessing this plasticity for therapeutic advantage, their successful use rests on a deep understanding of their developmental imperatives and the developmental programs in which they engage. The potential uses of stems are ranked and discussed in the order of most readily achievable to those requiring extensively more work. Although that order may not be what was contemplated at the field's birth, we nevertheless retain an optimism for the ultimate positive impact of exploiting this fundamental biology for the well-being of children.


Assuntos
Células-Tronco Neurais/citologia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Células-Tronco/citologia , Animais , Linhagem da Célula , Criança , Biologia do Desenvolvimento , Edição de Genes , Humanos , Camundongos , Plasticidade Neuronal , Medicina de Precisão/tendências , Proteômica , Transplante de Células-Tronco , Pesquisa Translacional Biomédica/tendências
8.
Nature ; 463(7279): 318-25, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20032975

RESUMO

The inference of transcriptional networks that regulate transitions into physiological or pathological cellular states remains a central challenge in systems biology. A mesenchymal phenotype is the hallmark of tumour aggressiveness in human malignant glioma, but the regulatory programs responsible for implementing the associated molecular signature are largely unknown. Here we show that reverse-engineering and an unbiased interrogation of a glioma-specific regulatory network reveal the transcriptional module that activates expression of mesenchymal genes in malignant glioma. Two transcription factors (C/EBPbeta and STAT3) emerge as synergistic initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBPbeta and STAT3 reprograms neural stem cells along the aberrant mesenchymal lineage, whereas elimination of the two factors in glioma cells leads to collapse of the mesenchymal signature and reduces tumour aggressiveness. In human glioma, expression of C/EBPbeta and STAT3 correlates with mesenchymal differentiation and predicts poor clinical outcome. These results show that the activation of a small regulatory module is necessary and sufficient to initiate and maintain an aberrant phenotypic state in cancer cells.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Mesoderma/metabolismo , Mesoderma/patologia , Transcrição Gênica , Animais , Neoplasias Encefálicas/diagnóstico , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Reprogramação Celular/genética , Biologia Computacional , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neurônios/metabolismo , Neurônios/patologia , Prognóstico , Reprodutibilidade dos Testes , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(26): E2410-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23674688

RESUMO

The cerebellar cortex is centrally involved in motor coordination and learning, and its sole output is provided by Purkinje neurons (PNs). Growth of PN dendrites and their major synaptic input from granule cell parallel fiber axons takes place almost entirely in the first several postnatal weeks. PNs are more vulnerable to cell death than most other neurons, but the mechanisms remain unclear. We find that the homozygous nervous (nr) mutant mouse's 10-fold-increased cerebellar tissue plasminogen activator (tPA), a part of the tPA/plasmin proteolytic system, influences several different molecular mechanisms, each regulating a key aspect of postnatal PN development, followed by selective PN necrosis, as follows. (i) Excess endogenous or exogenous tPA inhibits dendritic growth in vivo and in vitro by activating protein kinase Cγ and phosphorylation of microtubule-associated protein 2. (ii) tPA/plasmin proteolysis impairs parallel fiber-PN synaptogenesis by blocking brain-derived neurotrophic factor/tyrosine kinase receptor B signaling. (iii) Voltage-dependent anion channel 1 (a mitochondrial and plasma membrane protein) bound with kringle 5 (a peptide derived from the excess plasminogen) promotes pathological enlargement and rounding of PN mitochondria, reduces mitochondrial membrane potential, and damages plasma membranes. These abnormalities culminate in young nr PN necrosis that can be mimicked in wild-type PNs by exogenous tPA injection into cerebellum or prevented by endogenous tPA deletion in nr:tPA-knockout double mutants. In sum, excess tPA/plasmin, through separate downstream molecular mechanisms, regulates postnatal PN dendritogenesis, synaptogenesis, mitochondrial structure and function, and selective PN viability.


Assuntos
Córtex Cerebelar/crescimento & desenvolvimento , Córtex Cerebelar/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Córtex Cerebelar/citologia , Feminino , Fibrinolisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Neurogênese/genética , Neurogênese/fisiologia , Ativador de Plasminogênio Tecidual/deficiência , Ativador de Plasminogênio Tecidual/genética
10.
Pediatr Res ; 75(5): 603-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24463490

RESUMO

BACKGROUND: Gender is increasingly recognized as an important influence on brain development, disease susceptibility, and response to pharmacologic/rehabilitative treatments. In regenerative medicine, it remains entirely unknown whether there is an interaction between transplanted stem cells and host gender that might bias efficacy and safety in some patients but not others. METHODS: We examined the role of recipient gender in a neonatal rat hypoxic-ischemic injury (HII) model, treated with female human neuronal stem cells (hNSCs), labeled with superparamagnetic iron oxide particles implanted into the contralateral cerebral ventricle. We monitored HII evolution (by magnetic resonance imaging, histopathology, behavioral testing) and hNSC fate (migration, replication, viability). RESULTS: Recipient gender after implantation did not influence the volume or location of ischemic injury (1, 30, or 90 d) or behavior (90 d). Superparamagnetic iron oxide labeling did not influence HII evolution. Implantation had its greatest benefit on mild/moderate injuries, which remained stable rather than increasing as in severe HII as is the natural history for such lesions. CONCLUSION: Our results suggest that hNSC treatment (including using hNSCs that are prelabeled with iron to allow tracking in real time by magnetic resonance imaging) would be equally safe and effective for male and female human newborns with mild-to-moderate HII.


Assuntos
Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/terapia , Células-Tronco Neurais/citologia , Fatores Sexuais , Transplante de Células-Tronco , Animais , Comportamento Animal , Feminino , Compostos Férricos/química , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Neurais/transplante , Ratos
11.
Nat Med ; 13(4): 439-47, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17351625

RESUMO

Intracranial transplantation of neural stem cells (NSCs) delayed disease onset, preserved motor function, reduced pathology and prolonged survival in a mouse model of Sandhoff disease, a lethal gangliosidosis. Although donor-derived neurons were electrophysiologically active within chimeric regions, the small degree of neuronal replacement alone could not account for the improvement. NSCs also increased brain beta-hexosaminidase levels, reduced ganglioside storage and diminished activated microgliosis. Additionally, when oral glycosphingolipid biosynthesis inhibitors (beta-hexosaminidase substrate inhibitors) were combined with NSC transplantation, substantial synergy resulted. Efficacy extended to human NSCs, both to those isolated directly from the central nervous system (CNS) and to those derived secondarily from embryonic stem cells. Appreciating that NSCs exhibit a broad repertoire of potentially therapeutic actions, of which neuronal replacement is but one, may help in formulating rational multimodal strategies for the treatment of neurodegenerative diseases.


Assuntos
Encéfalo/citologia , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Doença de Sandhoff/terapia , Transplante de Células-Tronco , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Animais , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microglia/metabolismo , Técnicas de Patch-Clamp , Doença de Sandhoff/tratamento farmacológico , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(12): 4876-81, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21378266

RESUMO

In the field of induced potency and fate reprogramming, it remains unclear what the best starting cell might be and to what extent a cell need be transported back to a more primitive state for translational purposes. Reprogramming a committed cell back to pluripotence to then instruct it toward a particular specialized cell type is demanding and may increase risks of neoplasia and undesired cell types. Precursor/progenitor cells from the organ of therapeutic concern typically lack only one critical attribute--the capacity for sustained self-renewal. We speculated that this could be induced in a regulatable manner such that cells proliferate only in vitro and differentiate in vivo without the need for promoting pluripotence or specifying lineage identity. As proof-of-concept, we generated and tested the efficiency, safety, engraftability, and therapeutic utility of "induced conditional self-renewing progenitor (ICSP) cells" derived from the human central nervous system (CNS); we conditionally induced self-renewal efficiently within neural progenitors solely by introducing v-myc tightly regulated by a tetracycline (Tet)-on gene expression system. Tet in the culture medium activated myc transcription and translation, allowing efficient expansion of homogeneous, clonal, karyotypically normal human CNS precursors ex vivo; in vivo, where Tet was absent, myc was not expressed, and self-renewal was entirely inactivated (as was tumorigenic potential). Cell proliferation ceased, and differentiation into electrophysiologically active neurons and other CNS cell types in vivo ensued upon transplantation into rats, both during development and after adult injury--with functional improvement and without neoplasia, overgrowth, deformation, emergence of non-neural cell types, phenotypic or genomic instability, or need for immunosuppression. This strategy of inducing self-renewal might be applied to progenitors from other organs and may prove to be a safe, effective, efficient, and practical method for optimizing insights gained from the ability to reprogram cells.


Assuntos
Lesões Encefálicas/terapia , Encéfalo/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Transplante de Células-Tronco , Animais , Encéfalo/metabolismo , Linhagem Celular , Proliferação de Células , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Células-Tronco Neurais/metabolismo , Proteína Oncogênica p55(v-myc)/genética , Proteína Oncogênica p55(v-myc)/metabolismo , Ratos , Ratos Sprague-Dawley , Transplante Heterólogo
13.
STAR Protoc ; 5(2): 103025, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38852156

RESUMO

The Rice-Vannucci model in rodent pups is subject to substantial loss of animals, result inconsistency, and high lab-to-lab variability in extent and composition of induced injury. This protocol allows for highly predictable and reproducible hypoxic-ischemic cerebral injury lesions in post-natal day 10 Wistar rat pups with no mortality. We describe steps for common carotid artery ligation, brief post-operative normothermia, exposure to hypoxia, and post-hypoxic normothermia. Precise timing and temperature control in each step are crucial for a successful procedure. For complete details on the use and execution of this protocol, please refer to Hartman et al.1.


Assuntos
Animais Recém-Nascidos , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica , Ratos Wistar , Animais , Ratos , Hipóxia-Isquemia Encefálica/patologia , Asfixia Neonatal , Feminino
14.
Glia ; 61(5): 765-77, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404611

RESUMO

Globoid cell leukodystrophy (GLD) or Krabbe disease, is a fatal demyelinating disease attributed to mutations in the galactocerebrosidase (GALC) gene. Loss of function mutations in GALC result in accumulation of the glycolipid intermediate, galactosylsphingosine (psychosine). Due to the cytotoxicity of psychosine, it has been hypothesized that accumulated psychosine underlie the pathophysiology of GLD. However, the cellular mechanisms of GLD pathophysiology remain unclear. Globoid cells, multinucleated microglia/macrophages in the central nervous system (CNS), are a defining characteristic of GLD. Here we report that exposure of primary glial cultures to psychosine induces the expression and the production of matrix metalloproteinase (MMP)-3 that mediated a morphological transformation of microglia into a multinucleated globoid cell type. Additionally, psychosine-induced globoid cell formation from microglia was prevented by either genetic ablation or chemical inhibition of MMP-3. These effects are microglia-specific as peripheral macrophages exposed to psychosine did not become activated or express increased levels of MMP-3. In the brain from twitcher mice, a murine model of human GLD, elevated MMP-3 expression relative to wild-type littermates was contemporaneous with disease onset and further increased with disease progression. Further, bone marrow transplantation (BMT), currently the only therapeutically beneficial treatment for GLD, did not mitigate the elevated expression of MMP-3 in twitcher mice. Hence, elevated expression of MMP-3 in GLD may promote microglial responses to psychosine that may represent an important pathophysiological process in this disease and its treatment.


Assuntos
Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia de Células Globoides/patologia , Metaloproteinase 3 da Matriz/fisiologia , Psicosina/toxicidade , Animais , Animais Recém-Nascidos , Células Cultivadas , Leucodistrofia de Células Globoides/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Proc Natl Acad Sci U S A ; 107(11): 5184-9, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20147621

RESUMO

How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication.


Assuntos
Comunicação Celular , Junções Comunicantes/metabolismo , Neurônios/citologia , Transplante de Células-Tronco , Animais , Ataxina-1 , Ataxinas , Adesão Celular , Diferenciação Celular , Saúde , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Técnicas de Cultura de Órgãos , Células de Purkinje/citologia
16.
Proc Natl Acad Sci U S A ; 107(8): 3552-7, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133595

RESUMO

Approximately 3,500 mammalian genes are predicted to be secreted or single-pass transmembrane proteins. The function of the majority of these genes is still unknown, and a number of the encoded proteins might find use as new therapeutic agents themselves or as targets for small molecule or antibody drug development. To analyze the physiological activities of the extracellular proteome, we developed a large-scale, high-throughput protein expression, purification, and screening platform. For this study, the complete human extracellular proteome was analyzed and prioritized based on genome-wide disease association studies to select 529 initial target genes. These genes were cloned into three expression vectors as native sequences and as N-terminal and C-terminal Fc fusions to create an initial collection of 806 purified secreted proteins. To determine its utility, this library was screened in an OCT4-based cellular assay to identify regulators of human embryonic stem-cell self-renewal. We found that the pigment epithelium-derived factor can promote long-term pluripotent growth of human embryonic stem cells without bFGF or TGFbeta/Activin/Nodal ligand supplementation. Our results further indicate that activation of the pigment epithelium-derived factor receptor-Erk1/2 signaling pathway by the pigment epithelium-derived factor is sufficient to maintain the self-renewal of pluripotent human embryonic stem cells. These experiments illustrate the potential for discovering novel biological functions by directly screening protein diversity in cell-based phenotypic or reporter assays.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteoma/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Ensaios de Triagem em Larga Escala , Humanos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteoma/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais
17.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747824

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.

18.
Ann Neurol ; 69(2): 282-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21387373

RESUMO

OBJECTIVE: Quantitative magnetic resonance imaging (MRI) can serially and noninvasively assess the degree of injury in rat pup models of hypoxic ischemic injury (HII). It can also noninvasively monitor stem cell migration following iron oxide prelabeling. Reports have shown that neural stem cells (NSCs) may help mediate neuroprotection or stimulate neuroreparative responses in adult and neonatal models of ischemic injury. We investigated the ability of high-field MRI to monitor and noninvasively quantify the migration, proliferation, and location of iron oxide-labeled NSCs over very long time periods (58 weeks) in real time while contemporaneously correlating this activity with the evolving severity and extent of neural damage. METHODS: Labeled clonal murine NSCs (mNSCs) were implanted 3 days after unilateral HII in 10-day-old rat pups into the contralateral striatum or ventricle. We developed methods for objectively quantifying key aspects of dynamic NSC behavior (eg, viability; extent, and speed of migration; degree of proliferation; extent of integration into host parenchyma). MRI images were validated with histological and immunohistochemical assessments. RESULTS: mNSCs rapidly migrated (100 µm/day) to the lesion site. Chains of migrating NSCs were observed in the corpus callosum. In pups subjected to HII, though not in intact control animals, we observed a 273% increase in the MR-derived volume of mNSCs 4 weeks after implantation (correlating with the known proliferative behavior of endogenous and exogenous NSCs) that slowly declined over the 58-week time course, with no adverse consequences. Large numbers of now quiescent mNSCs remained at the site of injury, many retaining their iron oxide label. INTERPRETATION: Our studies demonstrate that MRI can simultaneously monitor evolving neonatal cerebral injury as well as NSC migration and location. Most importantly, it can noninvasively monitor proliferation dynamically for prolonged time periods. To be able to pursue clinical trials in newborns using stem cell therapies it is axiomatic that safety be insured through the long-term real time monitoring of cell fate and activity, particularly with regard to observing unanticipated risks to the developing brain. This study supports the feasibility of reliably using MRI for this purpose.


Assuntos
Movimento Celular , Proliferação de Células , Hipóxia-Isquemia Encefálica/fisiopatologia , Células-Tronco Neurais/fisiologia , Animais , Diferenciação Celular , Hipóxia-Isquemia Encefálica/patologia , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto/fisiologia , Camundongos , Atividade Motora/fisiologia , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod
19.
Biomed Microdevices ; 14(5): 829-838, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22767243

RESUMO

Access to unlimited numbers of live human neurons derived from stem cells offers unique opportunities for in vitro modeling of neural development, disease-related cellular phenotypes, and drug testing and discovery. However, to develop informative cellular in vitro assays, it is important to consider the relevant in vivo environment of neural tissues. Biomimetic 3D scaffolds are tools to culture human neurons under defined mechanical and physico-chemical properties providing an interconnected porous structure that may potentially enable a higher or more complex organization than traditional two-dimensional monolayer conditions. It is known that even minor variations in the internal geometry and mechanical properties of 3D scaffolds can impact cell behavior including survival, growth, and cell fate choice. In this report, we describe the design and engineering of 3D synthetic polyethylene glycol (PEG)-based and biodegradable gelatin-based scaffolds generated by a free form fabrication technique with precise internal geometry and elastic stiffnesses. We show that human neurons, derived from human embryonic stem (hESC) cells, are able to adhere to these scaffolds and form organoid structures that extend in three dimensions as demonstrated by confocal and electron microscopy. Future refinements of scaffold structure, size and surface chemistries may facilitate long term experiments and designing clinically applicable bioassays.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/ultraestrutura , Neurônios/citologia , Alicerces Teciduais/química , Materiais Biomiméticos/química , Adesão Celular , Células Cultivadas , Desenho de Equipamento , Gelatina/química , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Polietilenoglicóis/química
20.
Proc Natl Acad Sci U S A ; 106(8): 2903-8, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19193855

RESUMO

Molecular and cellular interactions coordinating the origin and fate of neural stem cells (NSCs) in the adult brain are far from being understood. We present a protein complex that controls proliferation and migration of adult NSCs destined for the mouse olfactory bulb (OB). Combinatorial selection based on phage display technology revealed a previously unrecognized complex between the soluble protein netrin-4 and laminin gamma1 subunit that in turn activates an alpha6beta1 integrin-mediated signaling pathway in NSCs. Differentiation of NSCs is accompanied by a decrease in netrin-4 receptors, indicating that netrin-4 participates in the continual propagation of this stem cell population. Notably, the stem cells themselves do not synthesize netrin-4. Further, we show that netrin-4 is produced by selected GFAP-positive astrocytes positioned close to newborn neurons migrating in the anterior part of the rostral migratory stream (RMS) and within the OB. Our findings present a unique molecular mechanism mediating astrocytic/neuronal crosstalk that regulates ongoing neurogenesis in the adult olfactory system.


Assuntos
Integrina alfa6beta1/fisiologia , Laminina/fisiologia , Fatores de Crescimento Neural/fisiologia , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Integrina alfa6beta1/metabolismo , Laminina/metabolismo , Camundongos , Fatores de Crescimento Neural/metabolismo , Netrinas , Bulbo Olfatório/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA