Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 25(14): 5834-45, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15988001

RESUMO

The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth in response to energy stress. Endogenous REDD1 is induced following energy stress, and REDD1-/- cells are highly defective in dephosphorylation of the key mTOR substrates S6K and 4E-BP1 following either ATP depletion or direct activation of the AMP-activated protein kinase (AMPK). REDD1 likely acts on the TSC1/2 complex, as regulation of mTOR substrate phosphorylation by REDD1 requires TSC2 and is blocked by overexpression of the TSC1/2 downstream target Rheb but is not blocked by inhibition of AMPK. Tetracycline-inducible expression of REDD1 triggers rapid dephosphorylation of S6K and 4E-BP1 and significantly decreases cellular size. Conversely, inhibition of endogenous REDD1 by short interfering RNA increases cell size in a rapamycin-sensitive manner, and REDD1-/- cells are defective in cell growth regulation following ATP depletion. These results define REDD1 as a critical transducer of the cellular response to energy depletion through the TSC-mTOR pathway.


Assuntos
Metabolismo Energético/fisiologia , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Tamanho Celular , Metabolismo Energético/genética , Ativação Enzimática , Humanos , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosforilação , Proteínas Quinases/fisiologia , Interferência de RNA , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética , Proteína 2 do Complexo Esclerose Tuberosa
2.
Genes Dev ; 22(2): 239-51, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18198340

RESUMO

Hypoxia induces rapid and dramatic changes in cellular metabolism, in part through inhibition of target of rapamycin (TOR) kinase complex 1 (TORC1) activity. Genetic studies have shown the tuberous sclerosis tumor suppressors TSC1/2 and the REDD1 protein to be essential for hypoxia regulation of TORC1 activity in Drosophila and in mammalian cells. The molecular mechanism and physiologic significance of this effect of hypoxia remain unknown. Here, we demonstrate that hypoxia and REDD1 suppress mammalian TORC1 (mTORC1) activity by releasing TSC2 from its growth factor-induced association with inhibitory 14-3-3 proteins. Endogenous REDD1 is required for both dissociation of endogenous TSC2/14-3-3 and inhibition of mTORC1 in response to hypoxia. REDD1 mutants that fail to bind 14-3-3 are defective in eliciting TSC2/14-3-3 dissociation and mTORC1 inhibition, while TSC2 mutants that do not bind 14-3-3 are inactive in hypoxia signaling to mTORC1. In vitro, loss of REDD1 signaling promotes proliferation and anchorage-independent growth under hypoxia through mTORC1 dysregulation. In vivo, REDD1 loss elicits tumorigenesis in a mouse model, and down-regulation of REDD1 is observed in a subset of human cancers. Together, these findings define a molecular mechanism of signal integration by TSC1/2 that provides insight into the ability of REDD1 to function in a hypoxia-dependent tumor suppressor pathway.


Assuntos
Hipóxia Celular/fisiologia , Proteínas Quinases/metabolismo , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/prevenção & controle , Células Cultivadas , Humanos , Camundongos , Camundongos Nus , Modelos Biológicos , Transplante de Neoplasias , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
3.
J Cell Biol ; 180(4): 691-6, 2008 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-18299344

RESUMO

FOXO is thought to function as a repressor of growth that is, in turn, inhibited by insulin signaling. However, inactivating mutations in Drosophila melanogaster FOXO result in viable flies of normal size, which raises a question over the involvement of FOXO in growth regulation. Previously, a growth-suppressive role for FOXO under conditions of increased target of rapamycin (TOR) pathway activity was described. Here, we further characterize this phenomenon. We show that tuberous sclerosis complex 1 mutations cause increased FOXO levels, resulting in elevated expression of FOXO-regulated genes, some of which are known to antagonize growth-promoting pathways. Analogous transcriptional changes are observed in mammalian cells, which implies that FOXO attenuates TOR-driven growth in diverse species.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Fatores de Transcrição Forkhead/genética , Mutação/genética , Organogênese/genética , Animais , Proliferação de Células , Anormalidades Congênitas/genética , Drosophila melanogaster/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Inibidores do Crescimento/genética , Inibidores do Crescimento/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/genética , Proteínas Quinases , Elementos Reguladores de Transcrição/genética , Especificidade da Espécie , Serina-Treonina Quinases TOR , Transcrição Gênica/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA