Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
J Virol ; 96(24): e0115022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448800

RESUMO

Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of in vitro-transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.5 cells. The levels of viral DNA replication intermediates and cccDNA peaked at 24 and 48 h post-pgRNA transfection, respectively. HBV surface antigen (HBsAg) became detectable in culture medium at day 4 posttransfection. Interestingly, the early robust viral DNA replication and cccDNA synthesis did not depend on the expression of HBV X protein (HBx), whereas HBsAg production was strictly dependent on viral DNA replication and expression of HBx, consistent with the essential role of HBx in the transcriptional activation of cccDNA minichromosomes. While the robust and synchronized HBV replication within 48 h post-pgRNA transfection is particularly suitable for the precise mapping of the HBV replication steps, from capsid assembly to cccDNA formation, targeted by distinct antiviral agents, the treatment of cells starting at 48 h post-pgRNA transfection allows the assessment of antiviral agents on mature nucleocapsid uncoating, cccDNA synthesis, and transcription, as well as viral RNA stability. Moreover, the pgRNA launch system could be used to readily assess the impacts of drug-resistant variants on cccDNA formation and other replication steps in the viral life cycle. IMPORTANCE Hepadnaviral pgRNA not only serves as a template for reverse transcriptional replication of viral DNA but also expresses core protein and DNA polymerase to support viral genome replication and cccDNA synthesis. Not surprisingly, cytoplasmic expression of duck hepatitis B virus pgRNA initiated viral replication leading to infectious virion secretion. However, HBV replication and antiviral mechanism were studied primarily in human hepatoma cells transiently or stably transfected with plasmid-based HBV replicons. The presence of large amounts of transfected HBV DNA or transgenes in cellular chromosomes hampered the robust analyses of HBV replication and cccDNA function. As demonstrated here, the pgRNA launch HBV replication system permits the accurate mapping of antiviral target and investigation of cccDNA biosynthesis and transcription using secreted HBsAg as a convenient quantitative marker. The effect of drug-resistant variants on viral capsid assembly, genome replication, and cccDNA biosynthesis and function can also be assessed using this system.


Assuntos
Vírus da Hepatite B , Virologia , Humanos , Antivirais/farmacologia , Replicação do DNA , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral , Virologia/métodos , Linhagem Celular Tumoral
3.
Bioorg Med Chem Lett ; 94: 129456, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633618

RESUMO

Disruption of the HBV capsid assembly process through small-molecule interaction with HBV core protein is a validated target for the suppression of hepatitis B viral replication and the development of new antivirals. Through combination of key structural features associated with two distinct series of capsid assembly modulators, a novel aminochroman-based chemotype was identified. Optimization of anti-HBV potency through generation of SAR in addition to further core modifications provided a series of related functionalized aminoindanes. Key compounds demonstrated excellent cellular potency in addition to favorable ADME and pharmacokinetic profiles and were shown to be highly efficacious in a mouse model of HBV replication. Aminoindane derivative AB-506 was subsequently advanced into clinical development.


Assuntos
Antivirais , Proteínas do Capsídeo , Capsídeo , Animais , Camundongos , Antivirais/farmacologia , Modelos Animais de Doenças , Relação Estrutura-Atividade , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/metabolismo
4.
J Virol ; 95(18): e0057421, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34191584

RESUMO

Noncanonical poly(A) polymerases PAPD5 and PAPD7 (PAPD5/7) stabilize hepatitis B virus (HBV) RNA via the interaction with the viral posttranscriptional regulatory element (PRE), representing new antiviral targets to control HBV RNA metabolism, hepatitis B surface antigen (HBsAg) production, and viral replication. Inhibitors targeting these proteins are being developed as antiviral therapies; therefore, it is important to understand how PAPD5/7 coordinate to stabilize HBV RNA. Here, we utilized a potent small-molecule AB-452 as a chemical probe, along with genetic analyses to dissect the individual roles of PAPD5/7 in HBV RNA stability. AB-452 inhibits PAPD5/7 enzymatic activities and reduces HBsAg both in vitro (50% effective concentration [EC50] ranged from 1.4 to 6.8 nM) and in vivo by 0.94 log10. Our genetic studies demonstrate that the stem-loop alpha sequence within PRE is essential for both maintaining HBV poly(A) tail integrity and determining sensitivity toward the inhibitory effect of AB-452. Although neither single knockout (KO) of PAPD5 nor PAPD7 reduces HBsAg RNA and protein production, PAPD5 KO does impair poly(A) tail integrity and confers partial resistance to AB-452. In contrast, PAPD7 KO did not result in any measurable changes within the HBV poly(A) tails, but cells with both PAPD5 and PAPD7 KO show reduced HBsAg production and conferred complete resistance to AB-452 treatment. Our results indicate that PAPD5 plays a dominant role in stabilizing viral RNA by protecting the integrity of its poly(A) tail, while PAPD7 serves as a second line of protection. These findings inform PAPD5-targeted therapeutic strategies and open avenues for further investigating PAPD5/7 in HBV replication. IMPORTANCE Chronic hepatitis B affects more than 250 million patients and is a major public health concern worldwide. HBsAg plays a central role in maintaining HBV persistence, and as such, therapies that aim at reducing HBsAg through destabilizing or degrading HBV RNA have been extensively investigated. Besides directly degrading HBV transcripts through antisense oligonucleotides or RNA silencing technologies, small-molecule compounds targeting host factors such as the noncanonical poly(A) polymerase PAPD5 and PAPD7 have been reported to interfere with HBV RNA metabolism. Herein, our antiviral and genetic studies using relevant HBV infection and replication models further characterize the interplays between the cis element within the viral sequence and the trans elements from the host factors. PAPD5/7-targeting inhibitors, with oral bioavailability, thus represent an opportunity to reduce HBsAg through destabilizing HBV RNA.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Vírus da Hepatite B/genética , Hepatite B/virologia , RNA Nucleotidiltransferases/metabolismo , Estabilidade de RNA , RNA Viral/química , Replicação Viral , Animais , Antivirais/farmacologia , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , DNA Polimerase Dirigida por DNA/genética , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Hepatite B/genética , Hepatite B/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Nucleotidiltransferases/antagonistas & inibidores , RNA Nucleotidiltransferases/genética , RNA Viral/genética
5.
J Infect Dis ; 224(Supplement_1): S1-S21, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111271

RESUMO

The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , Desenvolvimento de Medicamentos , Humanos , National Institutes of Health (U.S.) , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Estados Unidos , Replicação Viral/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-29555628

RESUMO

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 µM; EC90 = 0.33 to 1.32 µM) with no significant cytotoxicity (50% cytotoxic concentration > 10 µM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Montagem de Vírus/efeitos dos fármacos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , DNA Circular/metabolismo , DNA Viral/sangue , DNA Viral/metabolismo , Feminino , Guanina/análogos & derivados , Guanina/farmacologia , Vírus da Hepatite B/crescimento & desenvolvimento , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , RNA Viral/genética
7.
Antimicrob Agents Chemother ; 58(11): 6861-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182647

RESUMO

Resistance to the 2'-F-2'-C-methylguanosine monophosphate nucleotide hepatitis C virus (HCV) inhibitors PSI-352938 and PSI-353661 was associated with a combination of amino acid changes (changes of S to G at position 15 [S15G], C223H, and V321I) within the genotype 2a nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase. To understand the role of these residues in viral replication, we examined the effects of single and multiple point mutations on replication fitness and inhibition by a series of nucleotide analog inhibitors. An acidic residue at position 15 reduced replicon fitness, consistent with its proximity to the RNA template. A change of the residue at position 223 to an acidic or large residue reduced replicon fitness, consistent with its proposed proximity to the incoming nucleoside triphosphate (NTP). A change of the residue at position 321 to a charged residue was not tolerated, consistent with its position within a hydrophobic cavity. This triple resistance mutation was specific to both genotype 2a virus and 2'-F-2'-C-methylguanosine inhibitors. A crystal structure of the NS5B S15G/C223H/V321I mutant of the JFH-1 isolate exhibited rearrangement to a conformation potentially consistent with short primer-template RNA binding, which could suggest a mechanism of resistance accomplished through a change in the NS5B conformation, which was better tolerated by genotype 2a virus than by viruses of other genotypes.


Assuntos
Farmacorresistência Viral/genética , Hepacivirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/ultraestrutura , Replicação Viral/genética , Antivirais/farmacologia , Cristalografia por Raios X , Óxidos P-Cíclicos/farmacologia , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/crescimento & desenvolvimento , Humanos , Nucleosídeos/farmacologia , Estrutura Terciária de Proteína , RNA Viral/genética , Proteínas de Ligação a RNA/genética
8.
J Med Chem ; 67(2): 1421-1446, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38190324

RESUMO

Approved therapies for hepatitis B virus (HBV) treatment include nucleos(t)ides and interferon alpha (IFN-α) which effectively suppress viral replication, but they rarely lead to cure. Expression of viral proteins, especially surface antigen of the hepatitis B virus (HBsAg) from covalently closed circular DNA (cccDNA) and the integrated genome, is believed to contribute to the persistence of HBV. This work focuses on therapies that target the expression of HBV proteins, in particular HBsAg, which differs from current treatments. Here we describe the identification of AB-452, a dihydroquinolizinone (DHQ) analogue. AB-452 is a potent HBV RNA destabilizer by inhibiting PAPD5/7 proteins in vitro with good in vivo efficacy in a chronic HBV mouse model. AB-452 showed acceptable tolerability in 28-day rat and dog toxicity studies, and a high degree of oral exposure in multiple species. Based on its in vitro and in vivo profiles, AB-452 was identified as a clinical development candidate.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Camundongos , Ratos , Animais , Cães , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B , Antivirais/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , RNA Viral/genética , Relação Estrutura-Atividade , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , DNA Viral/genética , Replicação Viral
9.
Viruses ; 16(3)2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543689

RESUMO

HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161's clinical development.


Assuntos
Complexos de Coordenação , Vírus da Hepatite B , Hepatite B Crônica , Naftalenossulfonatos , Masculino , Camundongos , Ratos , Animais , Cães , Vírus da Hepatite B/fisiologia , Antígenos de Superfície da Hepatite B/genética , RNA Viral , RNA Mensageiro , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Viral/genética , Hepatite B Crônica/tratamento farmacológico , DNA Circular
10.
ACS Infect Dis ; 10(5): 1780-1792, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38651692

RESUMO

The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Nucleosídeos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Humanos , Nucleosídeos/farmacologia , Nucleosídeos/química , Animais , Descoberta de Drogas , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Chlorocebus aethiops , Células Vero , COVID-19/virologia , RNA-Polimerase RNA-Dependente de Coronavírus
11.
J Virol ; 86(12): 6503-11, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496223

RESUMO

The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory ß-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory ß-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.


Assuntos
Hepacivirus/enzimologia , Hepacivirus/genética , RNA/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Cristalização , Replicação do DNA , Hepacivirus/química , Hepatite C/virologia , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Moldes Genéticos , Proteínas não Estruturais Virais/genética
12.
Antimicrob Agents Chemother ; 56(7): 3767-75, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526308

RESUMO

PSI-352938 is a novel cyclic phosphate prodrug of ß-D-2'-deoxy-2'-α-fluoro-2'-ß-C-methylguanosine-5'-monophosphate with potent anti-HCV activity. In order to inhibit the NS5B RNA-dependent RNA polymerase, PSI-352938 must be metabolized to the active triphosphate form, PSI-352666. During in vitro incubations with PSI-352938, significantly larger amounts of PSI-352666 were formed in primary hepatocytes than in clone A hepatitis C virus (HCV) replicon cells. Metabolism and biochemical assays were performed to define the molecular mechanism of PSI-352938 activation. The first step, removal of the isopropyl group on the 3',5'-cyclic phosphate moiety, was found to be cytochrome P450 (CYP) 3A4 dependent, with other CYP isoforms unable to catalyze the reaction. The second step, opening of the cyclic phosphate ring, was catalyzed by phosphodiesterases (PDEs) 2A1, 5A, 9A, and 11A4, all known to be expressed in the liver. The role of these enzymes in the activation of PSI-352938 was confirmed in primary human hepatocytes, where prodrug activation was reduced by inhibitors of CYP3A4 and PDEs. The third step, removal of the O(6)-ethyl group on the nucleobase, was shown to be catalyzed by adenosine deaminase-like protein 1. The resulting monophosphate was consecutively phosphorylated to the diphosphate and to the triphosphate PSI-352666 by guanylate kinase 1 and nucleoside diphosphate kinase, respectively. In addition, formation of nucleoside metabolites was observed in primary hepatocytes, and ecto-5'-nucleotidase was able to dephosphorylate the monophosphate metabolites. Since CYP3A4 is highly expressed in the liver, the CYP3A4-dependent metabolism of PSI-352938 makes it an effective liver-targeted prodrug, in part accounting for the potent antiviral activity observed clinically.


Assuntos
Antivirais/metabolismo , Óxidos P-Cíclicos/metabolismo , Hepacivirus/efeitos dos fármacos , Nucleosídeos/metabolismo , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Guanilato Quinases/metabolismo , Hepatócitos/metabolismo , Humanos , Núcleosídeo-Difosfato Quinase/metabolismo , Diester Fosfórico Hidrolases/metabolismo
13.
Rapid Commun Mass Spectrom ; 26(16): 1887-92, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22777791

RESUMO

RATIONALE: Nucleotide phosphoramidates are prodrugs which effectively deliver the active nucleotide to target tissues. It was shown that the individual phosphoramidate diastereomers have different antiviral activity, although the active nucleotide is the same. Therefore, a fast and simple analytical method is needed to characterize the individual diastereomeric phosphoramidate prodrugs. METHODS: Stock solutions of diastereomeric nucleotide phosphoramidate prodrugs, i.e., 5'-phosphate derivatives of the ß-D-2'-deoxy-2'-α-fluoro-2'-ß-C-methyluridine nucleotide, were made in 25% acetonitrile to achieve a final concentration of 10 µg/mL. The samples were studied using high-performance liquid chromatography (HPLC) coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS: The MS/MS spectra of diastereomeric pairs showed substantial differences in the relative abundances of a characteristic ion in negative mode, which is proposed to be a cyclic phosphoramidate ion. Results were confirmed by the MS/MS spectrum of an analog without the NH proton and deuterium exchange experiment. Furthermore, the diastereomer-specific fragmentation behavior in negative ESI-MS was used to characterize a series of nucleotide phosphoramidates with different amino acid and aromatic substituents. CONCLUSIONS: An HPLC/MS/MS method was developed for the differentiation of the diastereomers of phosphoramidate prodrugs. In negative mode MS/MS spectra, the cyclic phosphoramidate ions yielded unambiguous distinction. This method presented a rapid and simple way for the characterization of nucleotide phosphoramidates.


Assuntos
Amidas/química , Nucleotídeos/química , Ácidos Fosfóricos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão , Pró-Fármacos/química , Estereoisomerismo , Espectrometria de Massas em Tandem/métodos
14.
Bioorg Med Chem Lett ; 22(8): 2938-42, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22425564

RESUMO

The HCV non-structural protein NS5A has been established as a viable target for the development of direct acting antiviral therapy. From computational modeling studies strong intra-molecular hydrogen bonds were found to be a common structural moiety within known NS5A inhibitors that have low pico-molar replicon potency. Efforts to reproduce these γ-turn-like substructures provided a novel NS5A inhibitor based on a fluoro-olefin isostere. This fluoro-olefin containing inhibitor exhibited picomolar activity (EC(50)=79 pM) against HCV genotype 1b replicon without measurable cytotoxicity. This level of activity is comparable to the natural peptide-based inhibitors currently under clinic evaluation, and demonstrates that a peptidomimetic approach can serve as a useful strategy to produce potent and structurally unique inhibitors of HCV NS5A.


Assuntos
Alcenos/química , Flúor/química , Hepacivirus/efeitos dos fármacos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Alcenos/farmacologia , Flúor/farmacologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares
15.
Bioorg Med Chem Lett ; 22(18): 5924-9, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22892115

RESUMO

The 3',5'-cyclic phosphate prodrug 9-[ß-d-2'-deoxy-2'-α-fluoro-2'-ß-C-methylribofuranosyl]-2-amino-6-ethoxypurine, PSI-352938 1, has demonstrated promising anti-HCV efficacy in vitro and in human clinical trials. A structure-activity relationship study of the nucleoside 3',5'-cyclic phosphate series of ß-d-2'-deoxy-2'-α-fluoro-2'-ß-C-methylribofuranosyl nucleoside prodrugs was undertaken and the anti-HCV activity and in vitro safety profile were assessed. Cycloalkyl 3',5'-cyclic phosphate prodrugs were shown to be significantly more potent as inhibitors of HCV replication than branched and straight chain alkyl 3',5'-cyclic phosphate prodrugs. No cytotoxicity and mitochondrial toxicity for prodrugs 12, 13 and 19 were observed at concentrations up to 100 µm in vitro. Cycloalkyl esters of 3',5'-cyclic phosphate nucleotide prodrugs demonstrated the ability to produce high levels of active triphosphate in clone-A cells and primary human hepatocytes. Compounds 12, 13 and 19 also demonstrated the ability to effectively deliver in vivo high levels of active nucleoside phosphates to rat liver.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Nucleotídeos Cíclicos/farmacologia , Pró-Fármacos/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Fígado/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Nucleotídeos Cíclicos/síntese química , Nucleotídeos Cíclicos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Ratos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
16.
Biomed Chromatogr ; 26(5): 583-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21842514

RESUMO

A rapid and stereospecific method using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the separation and determination of PSI-7851 diastereomers in human K2EDTA plasma has been developed. The analytical method involves direct protein precipitation with acetonitrile, followed by separation of the diastereomers on a Luna C18 column, positive mode electrospray ionization and selected reaction monitoring mode mass spectrometry detection. The mobile phase composition and pH were investigated for the resolution of the two diastereomers of PSI-7851. The optimized method showed good resolution (R(s) = 4.8) within short analysis time (approximately 8 min). The assay range was 5-2500 ng/mL for both diastereomers using a 1/x² weighted linear regression analysis for standard curve fitting. Replicate sample analysis indicated that intra- and inter-day accuracy and precision were within ±15.0%. The recovery of diastereomers from human plasma was greater than 85% and no significant matrix effect was observed. The method was demonstrated to be sensitive, selective and robust, and was successfully used to support clinical studies.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Uridina Monofosfato/análogos & derivados , Análise de Variância , Estabilidade de Medicamentos , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo , Uridina Monofosfato/sangue , Uridina Monofosfato/química , Uridina Monofosfato/farmacocinética
17.
RSC Med Chem ; 13(9): 1007, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36324494

RESUMO

Guest editors Michael J. Sofia and Xuechen Li introduce the themed collection on antibiotic and antiviral compounds.

18.
RSC Med Chem ; 13(3): 343-349, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35434625

RESUMO

Disruption of the HBV viral life cycle with small molecules that prevent the encapsidation of pregenomic RNA and viral polymerase through binding to HBV core protein is a clinically validated approach to inhibiting HBV viral replication. Herein we report the further optimisation of clinical candidate AB-506 through core modification with a focus on increasing oral exposure and oral half-life. Maintenance of high levels of anti-HBV cellular potency in conjunction with improvements in pharmacokinetic properties led to multi-log10 reductions in serum HBV DNA following low, once-daily oral dosing for key analogues in a preclinical animal model of HBV replication.

19.
Hepatol Commun ; 6(12): 3457-3472, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36194181

RESUMO

AB-506 is a potent, pan-genotypic small molecule capsid inhibitor that inhibits hepatitis B virus (HBV) pregenomic RNA encapsidation. We assessed the safety, pharmacokinetics, and antiviral activity of AB-506 in two randomized, double-blinded Phase 1 studies in healthy subjects (HS) and subjects with chronic HBV infection (CHB). Single ascending and multiple doses of AB-506 or placebo (30-1000 mg or 400 mg daily for 10 days) were assessed in HS. AB-506 or placebo was assessed at either 160 mg or 400 mg daily for 28 days in subjects with CHB. A second follow-up study examined AB-506 or placebo at 400 mg daily for 28 days in 14 Caucasian and 14 East-Asian HS. Twenty-eight days of AB-506 at 160 mg and 400 mg produced mean HBV-DNA declines from baseline of 2.1 log10 IU/ml and 2.8 log10 IU/ml, respectively. Four subjects with CHB (all Asian) had Grade 4 alanine aminotransferase (ALT) elevations (2 at each dose) as HBV DNA was declining; three events led to treatment discontinuation. In the second follow-up study, 2 Asian HS had serious transaminitis events leading to treatment and study termination. No subjects had bilirubin elevations or signs of hepatic decompensation. Conclusion: AB-506 demonstrated mean HBV-DNA declines of >2 log10 ; however, transient but severe ALT flares were observed in 4 Asian subjects with CHB. In the follow-up study in HS, 2 additional Asian HS had Grade 4 flares, suggesting that AB-506 hepatotoxicity contributed to the ALT elevations. The AB-506 development program was terminated because of these findings.


Assuntos
Antivirais , Hepatite B , Humanos , Antivirais/efeitos adversos , Capsídeo , Proteínas do Capsídeo , DNA Viral , Seguimentos , Voluntários Saudáveis , Hepatite B/tratamento farmacológico , Antígenos E da Hepatite B , Vírus da Hepatite B/genética
20.
Antiviral Res ; 197: 105211, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826506

RESUMO

AB-506, a small-molecule inhibitor targeting the HBV core protein, inhibits viral replication in vitro (HepAD38 cells: EC50 of 0.077 µM, CC50 > 25 µM) and in vivo (HBV mouse model: ∼3.0 log10 reductions in serum HBV DNA compared to the vehicle control). Binding of AB-506 to HBV core protein accelerates capsid assembly and inhibits HBV pgRNA encapsidation. Furthermore, AB-506 blocks cccDNA establishment in HBV-infected HepG2-hNTCP-C4 cells and primary human hepatocytes, leading to inhibition of viral RNA, HBsAg, and HBeAg production (EC50 from 0.64 µM to 1.92 µM). AB-506 demonstrated activity across HBV genotypes A-H and maintains antiviral activity against nucleos(t)ide analog-resistant variants in vitro. Evaluation of AB-506 against a panel of core variants showed that T33N/Q substitutions results in >200-fold increase in EC50 values, while L30F, L37Q, and I105T substitutions showed an 8 to 20-fold increase in EC50 values in comparison to the wild-type. In vitro combinations of AB-506 with NAs or an RNAi agent were additive to moderately synergistic. AB-506 exhibits good oral bioavailability, systemic exposure, and higher liver to plasma ratios in rodents, a pharmacokinetic profile supporting clinical development for chronic hepatitis B.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Camundongos , Ratos , Montagem de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA