Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 138(6): 1681-1689.e8, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405666

RESUMO

BACKGROUND: We investigated 7 male patients (from 5 different families) presenting with profound lymphopenia, hypogammaglobulinemia, fluctuating monocytopenia and neutropenia, a poor immune response to vaccine antigens, and increased susceptibility to bacterial and varicella zoster virus infections. OBJECTIVE: We sought to characterize the genetic defect involved in a new form of X-linked immunodeficiency. METHODS: We performed genetic analyses and an exhaustive phenotypic and functional characterization of the lymphocyte compartment. RESULTS: We observed hemizygous mutations in the moesin (MSN) gene (located on the X chromosome and coding for MSN) in all 7 patients. Six of the latter had the same missense mutation, which led to an amino acid substitution (R171W) in the MSN four-point-one, ezrin, radixin, moesin domain. The seventh patient had a nonsense mutation leading to a premature stop codon mutation (R533X). The naive T-cell counts were particularly low for age, and most CD8+ T cells expressed the senescence marker CD57. This phenotype was associated with impaired T-cell proliferation, which was rescued by expression of wild-type MSN. MSN-deficient T cells also displayed poor chemokine receptor expression, increased adhesion molecule expression, and altered migration and adhesion capacities. CONCLUSION: Our observations establish a causal link between an ezrin-radixin-moesin protein mutation and a primary immunodeficiency that could be referred to as X-linked moesin-associated immunodeficiency.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Cromossomos Humanos X/genética , Síndromes de Imunodeficiência/genética , Infecções/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Adolescente , Adulto , Idoso , Adesão Celular , Movimento Celular , Criança , Pré-Escolar , Estudos de Associação Genética , Humanos , Contagem de Linfócitos , Masculino , Linhagem
3.
Cell Rep Med ; 4(2): 100919, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36706754

RESUMO

X-linked chronic granulomatous disease (CGD) is associated with defective phagocytosis, life-threatening infections, and inflammatory complications. We performed a clinical trial of lentivirus-based gene therapy in four patients (NCT02757911). Two patients show stable engraftment and clinical benefits, whereas the other two have progressively lost gene-corrected cells. Single-cell transcriptomic analysis reveals a significantly lower frequency of hematopoietic stem cells (HSCs) in CGD patients, especially in the two patients with defective engraftment. These two present a profound change in HSC status, a high interferon score, and elevated myeloid progenitor frequency. We use elastic-net logistic regression to identify a set of 51 interferon genes and transcription factors that predict the failure of HSC engraftment. In one patient, an aberrant HSC state with elevated CEBPß expression drives HSC exhaustion, as demonstrated by low repopulation in a xenotransplantation model. Targeted treatments to protect HSCs, coupled to targeted gene expression screening, might improve clinical outcomes in CGD.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Humanos , Terapia Genética/efeitos adversos , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Células-Tronco Hematopoéticas/metabolismo , Inflamação/metabolismo , Interferons/metabolismo
4.
Hum Mutat ; 33(2): 429-39, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095924

RESUMO

Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, ß-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein.


Assuntos
Retículo Endoplasmático/metabolismo , Mutação , Sarcoglicanas/química , Sarcoglicanas/genética , Alcaloides/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células HeLa , Humanos , Transporte Proteico/efeitos dos fármacos , Sarcoglicanopatias/genética , Sarcoglicanas/antagonistas & inibidores , Sarcolema/metabolismo
5.
Cell Mol Immunol ; 18(7): 1662-1676, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34117371

RESUMO

Several obstacles to the production, expansion and genetic modification of immunotherapeutic T cells in vitro have restricted the widespread use of T-cell immunotherapy. In the context of HSCT, delayed naïve T-cell recovery contributes to poor outcomes. A novel approach to overcome the major limitations of both T-cell immunotherapy and HSCT would be to transplant human T-lymphoid progenitors (HTLPs), allowing reconstitution of a fully functional naïve T-cell pool in the patient thymus. However, it is challenging to produce HTLPs in the high numbers required to meet clinical needs. Here, we found that adding tumor necrosis factor alpha (TNFα) to a DL-4-based culture system led to the generation of a large number of nonmodified or genetically modified HTLPs possessing highly efficient in vitro and in vivo T-cell potential from either CB HSPCs or mPB HSPCs through accelerated T-cell differentiation and enhanced HTLP cell cycling and survival. This study provides a clinically suitable cell culture platform to generate high numbers of clinically potent nonmodified or genetically modified HTLPs for accelerating immune recovery after HSCT and for T-cell-based immunotherapy (including CAR T-cell therapy).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Fator de Necrose Tumoral alfa , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Imunoterapia , Linfócitos T
6.
Hum Mol Genet ; 17(9): 1214-21, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18252745

RESUMO

Limb girdle muscular dystrophy type 2D (LGMD2D, OMIM600119) is a genetic progressive myopathy that is caused by mutations in the human alpha-sarcoglycan gene (SGCA). Here, we have introduced in mice the most prevalent LGMD2D mutation, R77C. It should be noted that the natural murine residue at this position is a histidine. The model is, therefore, referred as Sgca(H77C/H77C). Unexpectedly, we observed an absence of LGMD2D-like phenotype at histological or physiological level. Using a heterologous cellular model of the sarcoglycan complex formation, we showed that the R77C allele encodes a protein that fails to be delivered to its proper cellular localization in the plasma membrane, and consequently to the disappearance of a positively charged residue. Subsequently, we transferred an AAV vector coding for the human R77C protein in the muscle of Sgca-null mice and were able to pharmacologically rescue the R77C protein from endoplasmic reticulum-retention using proteasome or mannosidase I inhibitors. This suggests a therapeutic approach for LGMD2D patients carrying mutations that impair alpha-sarcoglycan trafficking.


Assuntos
Manosidases/metabolismo , Mutação de Sentido Incorreto , Sarcoglicanas/genética , Sarcoglicanas/metabolismo , Alcaloides/administração & dosagem , Animais , Linhagem Celular Tumoral , Cisteína/genética , Feminino , Humanos , Leupeptinas/farmacologia , Manosidases/antagonistas & inibidores , Camundongos , Camundongos Knockout , Músculos/patologia , Músculos/virologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/virologia , Fenótipo , Transporte Proteico/efeitos dos fármacos , Sarcoglicanas/análise
7.
Front Immunol ; 11: 1154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582217

RESUMO

Autosomal recessive mutations in genes required for cytotoxicity are causative of a life-threatening, early-onset hyperinflammatory syndrome termed familial hemophagocytic lymphohistiocytosis (FHL). Mutations in UNC13D cause FHL type 3. UNC13D encodes Munc13-4, a member of the Unc13 protein family which control SNARE complex formation and vesicle fusion. We have previously identified FHL3-associated mutations in the first intron of UNC13D which control transcription from an alternative transcriptional start site. Using isoform specific antibodies, we demonstrate that this alternative Munc13-4 isoform with a unique N-terminus is preferentially expressed in human lymphocytes and platelets, as compared to the conventional isoform that was mostly expressed in monocytes and neutrophils. The distinct N-terminal of the two isoforms did not impact on Munc13-4 localization or trafficking to the immunological synapse of cytotoxic T cells. Moreover, ectopic expression of both isoforms efficiently restored exocytosis by FHL3 patient-derived Munc13-4 deficient T cells. Thus, we demonstrate that the conventional and alternative Munc13-4 isoforms have different expression pattern in hematopoietic cell subsets, but display similar localization and contribution to T cell exocytosis. The use of an alternative transcriptional starting site (TSS) in lymphocytes and platelets could be selected for increasing the overall levels of Munc13-4 expression for efficient secretory granule release.


Assuntos
Plaquetas/metabolismo , Linfócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plaquetas/imunologia , Células Cultivadas , Humanos , Linfócitos/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/metabolismo , Mutação , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
8.
Mol Ther Methods Clin Dev ; 10: 341-347, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30191160

RESUMO

Lentiviral vectors have emerged as an efficient, safe therapeutic tool for gene therapy based on hematopoietic stem cells (HSCs) or T cells. However, the monitoring of transduced cells in preclinical models remains challenging because of the inefficient transduction of murine primary T cells with lentiviral vectors, in contrast to gammaretroviral vectors. The use of this later in preclinical proof of concept is not considered as relevant when a lentiviral vector will be used in a clinical trial. Hence, there is an urgent need to develop an efficient transduction protocol for murine cells with lentiviral vectors. Here, we describe an optimized protocol in which a nontoxic transduction enhancer (Lentiboost) enables the efficient transduction of primary murine T cells with lentiviral vectors. The optimized protocol combines low toxicity and high transduction efficiency. We achieved a high-level transduction of murine CD4+ and CD8+ T cells with a VSV-G-pseudotyped lentiviral vector with no changes in the phenotypes of transduced T cells, which were stable and long-lived in culture. This enhancer also increased the transduction of murine HSCs. Hence, use of this new transduction enhancer overcomes the limitations of lentiviral vectors in preclinical experiments and should facilitate the translation of strategies based on lentiviral vectors from the bench to the clinic.

9.
Blood Adv ; 1(27): 2781-2789, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29296930

RESUMO

Patients with mutations in the UNC13D gene (coding for Munc13-4 protein) suffer from familial hemophagocytic lymphohistiocytosis type 3 (FHL3), a life-threatening immune and hyperinflammatory disorder. The only curative treatment is allogeneic hematopoietic stem cell (HSC) transplantation, although the posttreatment survival rate is not satisfactory. Here, we demonstrate the curative potential of UNC13D gene correction of HSCs in a murine model of FHL3. We generated a self-inactivating lentiviral vector, used it to complement HSCs from Unc13d-deficient (Jinx) mice, and transplanted the cells back into the irradiated Jinx recipients. This procedure led to complete reconstitution of the immune system (ie, to wild-type levels). The recipients were then challenged with lymphocytic choriomeningitis virus to induce hemophagocytic lymphohistiocytosis (HLH)-like manifestations. All the clinical and biological signs of HLH were significantly reduced in mice having undergone HSC UNC13D gene correction than in nontreated animals. This beneficial effect was evidenced by the correction of blood cytopenia, body weight gain, normalization of the body temperature, decreased serum interferon-γ level, recovery of liver damage, and decreased viral load. These improvements can be explained by the restoration of the CD8+ T lymphocytes' cytotoxic function (as demonstrated here in an in vitro degranulation assay). Overall, our results demonstrate the efficacy of HSC gene therapy in an FHL-like setting of immune dysregulation.

10.
AIDS ; 29(11): 1319-24, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25513819

RESUMO

OBJECTIVES: Zidovudine and tenofovir are the two main nucleos(t)ide analogs used to prevent mother-to-child transmission of HIV. In vitro, both drugs bind to and integrate into human DNA and inhibit telomerase. The objective of the present study was to assess the genotoxic effects of either zidovudine or tenofovir-based combination therapies on cord blood cells in newborns exposed in utero. DESIGN: We compared the aneuploid rate and the gene expression profiles in cord blood samples from newborns exposed either to zidovudine or tenofovir-based combination therapies during pregnancy and from unexposed controls (n = 8, 9, and 8, respectively). METHODS: The aneuploidy rate was measured on the cord blood T-cell karyotype. Gene expression profiles of cord blood T cells and hematopoietic stem and progenitor cells were determined with microarrays, analyzed in a gene set enrichment analysis and confirmed by real-time quantitative PCRs. RESULTS: Aneuploidy was more frequent in the zidovudine-exposed group (26.3%) than in the tenofovir-exposed group (14.2%) or in controls (13.3%; P < 0.05 for both). The transcription of genes involved in DNA repair, telomere maintenance, nucleotide metabolism, DNA/RNA synthesis, and the cell cycle was deregulated in samples from both the zidovudine and the tenofovir-exposed groups. CONCLUSION: Although tenofovir has a lower clastogenic impact than zidovudine, gene expression profiling showed that both drugs alter the transcription of DNA repair and telomere maintenance genes.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Sangue Fetal/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Complicações Infecciosas na Gravidez/tratamento farmacológico , Tenofovir/uso terapêutico , Zidovudina/uso terapêutico , Aneuploidia , Feminino , Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/transmissão , Humanos , Recém-Nascido , Troca Materno-Fetal , Gravidez , Complicações Infecciosas na Gravidez/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA