RESUMO
A series of new thiophene-based guanylhydrazones (iminoguanidines) were synthesized in high yields using a straightforward two-step procedure. The antifungal activity of compounds was evaluated against a wide range of medicaly important fungal strains including yeasts, molds, and dermatophytes in comparison to clinically used drug voriconazole. Cytotoxic properties of compounds were also determined using human lung fibroblast cell line and hemolysis assay. All guanylhydrazones showed significant activity against broad spectrum of clinically important species of Candida spp., Aspergillus fumigatus, Fusarium oxysporum, Microsporum canis and Trichophyton mentagrophytes, which was in some cases comparable or better than activity of voriconazole. More importantly, compounds 10, 11, 13, 14, 18 and 21 exhibited excellent activity against voriconazole-resistant Candida albicans CA5 with very low minimal inhibitory concentration (MIC) values <2 µg mL(-1). Derivative 14, bearing bromine on the phenyl ring, was the most effective compound with MICs ranging from 0.25 to 6.25 µg mL(-1). However, bis-guanylhydrazone 18 showed better selectivity in terms of therapeutic index values. In vivo embryotoxicity on zebrafish (Danio rerio) showed improved toxicity profile of 11, 14 and 18 in comparison to that of voriconazole. Most guanylhydrazones also inhibited C. albicans yeast to hyphal transition, essential for its biofilm formation, while 11 and 18 were able to disperse preformed Candida biofilms. All guanylhydrazones showed the equal potential to interact with genomic DNA of C. albicans in vitro, thus indicating a possible mechanism of their action, as well as possible mechanism of observed cytotoxic effects. Tested compounds did not have significant hemolytic effect and caused low liposome leakage, which excluded the cell membrane as a primary target. On the basis of computational docking experiments using both human and cytochrome P450 from Candida it was concluded that the most active guanylhydrazones had minimal structural prerequisites to interact with the cytochrome P450 14α-demethylase (CYP51). Promising guanylhydrazone derivatives also showed satisfactory pharmacokinetic profile based on molecular calculations.
Assuntos
Farmacorresistência Fúngica/efeitos dos fármacos , Guanidinas/síntese química , Guanidinas/farmacologia , Tiofenos/farmacologia , Voriconazol/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Fusarium/efeitos dos fármacos , Guanidinas/química , Humanos , Testes de Sensibilidade Microbiana , Microsporum/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/química , Trichophyton/efeitos dos fármacosRESUMO
We herein report the design and synthesis of a novel series of thiophene- and furan-based aminoquinoline derivatives which were found to be potent antimalarials and inhibitors of ß-hematin polymerization. Tested compounds were 3-71 times more potent in vitro than CQ against chloroquine-resistant (CQR) W2 strain with benzonitrile 30 being as active as mefloquine (MFQ), and almost all synthesized aminoquinolines (22/27) were more potent than MFQ against multidrug-resistant (MDR) strain C235. In vivo experiments revealed that compound 28 showed clearance with recrudescence at 40 mg/kg/day, while 5/5 mice survived in Thompson test at 160 mg/kg/day.
Assuntos
Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Furanos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Tiofenos/farmacologia , Aminoquinolinas/síntese química , Aminoquinolinas/química , Animais , Antimaláricos/síntese química , Antimaláricos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Furanos/química , Células Hep G2 , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tiofenos/químicaRESUMO
A new oxidant, containing m-chloroperoxybenzoic acid (MCPBA) and an iron salt, was developed and used for oxidation of steroidal phenols to a quinol/epoxyquinol mixture. Reaction was optimized for estrone, by varying initiators (Fe-salts), reaction temperature, time and mode of MCPBA application. A series of five more substrates (17ß-estradiol and its hydrophobized derivatives) was subjected to the optimized oxidation, providing corresponding p-quinols and 4ß,5ß-epoxyquinols in good to moderate yields. The obtained epoxyquinols were additionally transformed by oxidation, as well as the acid-catalyzed oxirane opening. In a preliminary study of the antiproliferative activity against human cancer cell lines, all newly synthesized compounds expressed moderate to high activity.
RESUMO
OBJECTIVES: Malaria treatment is impeded by increasing resistance to conventional antimalarial drugs. Here we explored the activity of ten novel benzothiophene, thiophene and benzene aminoquinolines. METHODS: In vitro testing was performed by the lactate dehydrogenase assay in chloroquine (CQ)-sensitive Plasmodium falciparum strain 3D7 and CQ-resistant (CQR) P. falciparum strain Dd2. In vivo activity was evaluated by a modified Thompson test using C57BL/6 mice infected with Plasmodium berghei ANKA strain. RESULTS: Nine of the ten compounds had a lower 50% inhibitory concentration (IC50) than CQ against the CQR strain Dd2. Five of these compounds that were available for in vivo evaluation were shown to be non-toxic. All five compounds administered at a dose of 160mg/kg/day for 3 days prolonged the survival of treated compared with untreated mice. Untreated control mice died by Day 7 with a mean parasitaemia of 15%. Among treated mice, a dichotomous outcome was observed, with a two-third majority of treated mice dying by Day 17 with a low mean parasitaemia of 5%, whilst one-third survived longer with a mean hyperparasitaemia of 70%; specifically, five of these mice survived a mean of 25 days, whilst two even survived past Day 31. CONCLUSIONS: The significant antimalarial potential of this aminoquinoline series is illustrated by its excellent in vitro activity against the CQRP. falciparum strain and significant in vivo activity. Interestingly, compounds ClAQ7, ClAQ9 and ClAQ11 were able to confer resistance to cerebral malaria and afford a switch to hyperparasitaemia to mice prone to the neurological syndrome.
Assuntos
Antimaláricos , Malária Cerebral , Aminoquinolinas , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Cerebral/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium bergheiRESUMO
In this study we investigated the antiproliferative activity of six mixed steroidal tetraoxanes against various tumor cell lines, the toxicity against normal peripheral blood mononuclear cells (PBMC), and the mode of HeLa cell death induced by these compounds. Investigated tetraoxanes exerted a dose dependent antiproliferative action at micromolar concentrations toward target tumor cell lines. Treatment of HeLa cells for 24 h with all tetraoxanes induced apoptosis, as confirmed by morphological analysis and by the appearance of a typical ladder pattern in the DNA fragmentation assay.
Assuntos
Apoptose/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Esteroides/farmacologia , Tetraoxanos/farmacologia , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Células HeLa/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Estrutura Molecular , Esteroides/química , Tetraoxanos/químicaRESUMO
Among neglected tropical diseases, leishmaniasis is one of the most relevant with an estimated 30,000 deaths annually. Existing therapies have serious drawbacks in safety, drug resistance, field-adapted application and cost; therefore, new safer and shorter treatments are needed for this disease. Here we report on the synthesis of novel 4-amino-7-chloroquinoline-based compounds with leishmanicidal activity, together with deeper insight into the mechanism of action of our previously published hit compound 1. New derivatives showed comparable activity to 1 against both promastigote and intracellular amastigote forms of Leishmania infantum, with IC50â¯<â¯1⯵M. Furthermore, we have determined that compound 1 induced a decrease of intracellular ATP levels, as well as a mitochondrial depolarization, together with an alteration of plasma membrane permeability and a significant ROS production. The inhibition of the energy metabolism of Leishmania plays an important role in the leishmanicidal mechanism of this compound. In all, these results support the consideration of compound 1 for the future development of new leishmanicidal drugs.
Assuntos
Aminoquinolinas/farmacologia , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Aminoquinolinas/síntese química , Aminoquinolinas/química , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Metabolismo Energético , Leishmania infantum/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-AtividadeRESUMO
Ebola virus (EBOV) causes a deadly hemorrhagic fever in humans and non-human primates. There is currently no FDA-approved vaccine or medication to counter this disease. Here, we report on the design, synthesis and anti-viral activities of two classes of compounds which show high potency against EBOV in both in vitro cell culture assays and in vivo mouse models Ebola viral disease. These compounds incorporate the structural features of cationic amphiphilic drugs (CAD), i.e they possess both a hydrophobic domain and a hydrophilic domain consisting of an ionizable amine functional group. These structural features enable easily diffusion into cells but once inside an acidic compartment their amine groups became protonated, ionized and remain trapped inside the acidic compartments such as late endosomes and lysosomes. These compounds, by virtue of their lysomotrophic functions, blocked EBOV entry. However, unlike other drugs containing a CAD moiety including chloroquine and amodiaquine, compounds reported in this study display faster kinetics of accumulation in the lysosomes, robust expansion of late endosome/lysosomes, relatively more potent suppression of lysosome fusion with other vesicular compartments and inhibition of cathepsins activities, all of which play a vital role in anti-EBOV activity. Furthermore, the diazachrysene 2 (ZSML08) that showed most potent activity against EBOV in in vitro cell culture assays also showed significant survival benefit with 100% protection in mouse models of Ebola virus disease, at a low dose of 10â¯mg/kg/day. Lastly, toxicity studies in vivo using zebrafish models suggest no developmental defects or toxicity associated with these compounds. Overall, these studies describe two new pharmacophores that by virtue of being potent lysosomotrophs, display potent anti-EBOV activities both in vitro and in vivo animal models of EBOV disease.
Assuntos
Antivirais/química , Crisenos/química , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Animais , Antivirais/farmacologia , Antivirais/toxicidade , Crisenos/farmacologia , Crisenos/toxicidade , Lisossomos/metabolismo , Camundongos , Tensoativos , Internalização do Vírus/efeitos dos fármacos , Peixe-ZebraRESUMO
Of 17 prepared 1,2,4,5-tetraoxacyclohexanes stable to reductive and acidic conditions, 3 of them were more active than artemisinin against CQ and MFQ resistant strain TM91C235 and all compounds were more active in vitro against W2 than against D6 strain. In vivo, amines 10 and 11a cured all mice at higher doses with MCD < or = 37.5 (mg/kg)/day. Triol 13 was exceptionally active against melanoma (LOX IMVI) and ovarian cancer (IGROV1), both with LC 50 = 60 nM.
Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Peróxidos/química , Plasmodium falciparum/efeitos dos fármacos , Tetraoxanos/síntese química , Tetraoxanos/farmacologia , Animais , Antimaláricos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Estereoisomerismo , Relação Estrutura-Atividade , Tetraoxanos/químicaRESUMO
Eleven new tetraoxanes possessing cholic acid-derived carrier and isopropylidene moiety were synthesized and were tested in vitro and in vivo. In vitro screening revealed that nine of them were more potent against CQ-resistant W2 than CQ-susceptible D6 strain and that two of them were equally or more potent than artemisinin and mefloquine against multi-drug resistant TM91C235 strain. Amine 8 cured all mice at the dose of 160mg/kg/day, while the anilide 9 exhibited MCDAssuntos
Antimaláricos/síntese química
, Tetraoxanos/síntese química
, Tetraoxanos/farmacologia
, Acetona
, Animais
, Artemisininas
, Avaliação Pré-Clínica de Medicamentos
, Resistência a Múltiplos Medicamentos
, Mefloquina
, Camundongos
, Plasmodium falciparum/efeitos dos fármacos
RESUMO
In this Letter, a detailed analysis of 30 4-aminoquinoline-based compounds with regard to their potential as antileishmanial drugs has been carried out. Ten compounds demonstrated IC50 < 1 µM against promastigote stages of L. infantum and L. tropica, and five compounds showed IC50 < 1 µM against intramacrophage L. infantum amastigotes. Two compounds showed dose-dependent enhancement of NO and ROS production by bone marrow-derived macrophages and remarkable reduction of parasite load in vivo, with advantage of being short-term and orally active. To the best of our knowledge, this is the first example of 4-amino-7-chloroquinoline derivatives active in Leishmania infantum infected mice.
RESUMO
Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37°C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.
Assuntos
Antimaláricos/metabolismo , Albumina Sérica Humana/metabolismo , Antimaláricos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Plasmodium/efeitos dos fármacos , Ligação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência , TermodinâmicaRESUMO
The synthesis and inhibitory potencies against botulinum neurotoxin serotype A light chain (BoNT/A LC) using in vitro HPLC based enzymatic assay for various steroidal, benzothiophene, thiophene, and adamantane 4-aminoquinoline derivatives are described. In addition, the compounds were evaluated for the activity against BoNT/A holotoxin in mouse embryonic stem cell derived motor neurons. Steroidal derivative 16 showed remarkable protection (up to 89% of uncleaved SNAP-25) even when administered 30 min postintoxication. This appears to be the first example of LC inhibitors antagonizing BoNT intoxication in mouse embryonic stem cell derived motor neurons (mES-MNs) in a postexposure model. Oral administration of 16 was well tolerated in the mouse up to 600 mg/kg, q.d. Although adequate unbound drug levels were not achieved at this dose, the favorable in vitro ADMET results strongly support further work in this series.
Assuntos
Aminoquinolinas/farmacologia , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Neurônios Motores/patologia , Adamantano/análogos & derivados , Aminoquinolinas/química , Animais , Camundongos , Simulação de Acoplamento Molecular , Neurônios Motores/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/citologia , Esteroides/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Tiofenos/química , Testes de ToxicidadeRESUMO
The synthesis of deoxycholic acid (DCA)- and cholic acid (CA)-derived mixed tetraoxanes revealed that N-(2-dimethylamino)ethyl derivatives are potent antimalarials in vitro and in vivo. The tetraoxanes presented in this paper are dual inhibitors: besides curing mice in vivo without observed toxic effects, they kill cancer cell lines at very low concentrations. For example, DCA and CA derivatives 16 and 25 cured 3/5 (160 mg/kg/day) and 2/5 (40 mg/kg/day, MTD >960 mg/kg), respectively, and they were extremely active against melanoma LOX IMVI cancer, LC50 = 22 nM and 69 nM, respectively.
Assuntos
Antimaláricos/síntese química , Antineoplásicos/síntese química , Ácido Desoxicólico/análogos & derivados , Ácido Desoxicólico/síntese química , Tetraoxanos/síntese química , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Cicloexanos/síntese química , Cicloexanos/metabolismo , Cicloexanos/farmacologia , Ácido Desoxicólico/metabolismo , Ácido Desoxicólico/farmacologia , Resistência a Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Malária/tratamento farmacológico , Camundongos , Microssomos/metabolismo , Plasmodium berghei , Plasmodium falciparum/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Tetraoxanos/metabolismo , Tetraoxanos/farmacologiaRESUMO
We previously identified structurally diverse small molecule (non-peptidic) inhibitors (SMNPIs) of the botulinum neurotoxin serotype A (BoNT/A) light chain (LC). Of these, several (including antimalarial drugs) contained a 4-amino-7-chloroquinoline (ACQ) substructure and a separate positive ionizable amine component. The same antimalarials have also been found to interfere with BoNT/A translocation into neurons, via pH elevation of the toxin-mediated endosome. Thus, this structural class of small molecules may serve as dual-function BoNT/A inhibitors. In this study, we used a refined pharmacophore for BoNT/A LC inhibition to identify four new, potent inhibitors of this structural class (IC50's ranged from 3.2 to 17 muM). Molecular docking indicated that the binding modes for the new SMNPIs are consistent with those of other inhibitors that we have identified, further supporting our structure-based pharmacophore. Finally, structural motifs of the new SMNPIs, as well as two structure-based derivatives, were examined for activity, providing valuable information about pharmacophore component contributions to inhibition.
Assuntos
Aminoquinolinas/síntese química , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Metaloproteases/antagonistas & inibidores , Metaloproteases/química , Modelos Moleculares , Aminoquinolinas/química , Sítios de Ligação , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
Malaria remains a major disease in the developing world and globally is the most important parasitic disease causing significant morbidity and mortality. Because of widespread resistance to conventional antimalarials, including chloroquine (CQ), new drugs are urgently needed. Here we report on the antimalarial efficacy, both in vitro and in vivo, of a series of aminoquinoline derivatives with adamantane or benzothiophene as a carrier. In vitro efficacy was evaluated by a lactate dehydrogenase (LDH) assay in cultures of a CQ-sensitive (3D7) and CQ-resistant (Dd2) strain of Plasmodium falciparum. Of a series of 26 screened compounds, 12 that exerted a growth inhibition rate of ≥50% were further examined in vitro to determine the 50% inhibitory concentration (IC50) values. Nine compounds shown in preliminary experiments to be non-toxic in vivo were evaluated in C57BL/6 mice infected with Plasmodium berghei ANKA strain using a modified Thompson test. All nine compounds examined in vivo prolonged the survival of treated versus untreated mice, four of which afforded ≥60% survival. Most notably, two of these compounds, both with the adamantane carrier, afforded complete cure (100% survival and parasite clearance). Interestingly, one of these compounds had no in vitro effect against the CQ-resistant P. falciparum strain. Better in vivo compared with in vitro results suggest a role for compound metabolites rather than the compounds themselves. The results presented here point to adamantane as a carrier that enhances the antimalarial potential of aminoquinolines.
Assuntos
Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacologia , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Concentração Inibidora 50 , L-Lactato Desidrogenase/análise , Malária/tratamento farmacológico , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Parasitária , Análise de Sobrevida , Resultado do TratamentoRESUMO
Mixed tetraoxanes 5a and 13 synthesized from cholic acid and 4-oxocyclohexanecarboxylic acid were as active as artemisinin against chloroquine-susceptible, chloroquine-resistant, and multidrug-resistant Plasmodium falciparum strains (IC50, IC90). Most active 13 is metabolically stable in in vitro metabolism studies. In vivo studies on tetraoxanes with a C(4' ') methyl group afforded compound 15, which cured 4/5 mice at 600 and 200 mg.kg-1.day-1, and 2/5 mice at 50 mg.kg-1.day-1, showing no toxic effects. Tetraoxane 19 was an extremely active antiproliferative with LC50 of 17 nM and maximum tolerated dose of 400 mg/kg. In Fe(II)-induced scission of tetraoxane antimalarials only RO* radicals were detected by EPR experiments. This finding and the indication of Fe(IV)=O species led us to propose that RO* radicals are probably capable of inducing the parasite's death. Our results suggest that C radicals are possibly not the only lethal species derived from peroxide prodrug antimalarials, as currently believed.
Assuntos
Antimaláricos/síntese química , Compostos Ferrosos/química , Tetraoxanos/síntese química , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Humanos , Técnicas In Vitro , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tetraoxanos/química , Tetraoxanos/farmacologiaRESUMO
A novel series of thiepine derivatives were synthesized and evaluated as potential antimicrobials. All the synthesized compounds were evaluated for their antimicrobial activities in vitro against the fungi Candida albicans (ATCC 10231), C. parapsilosis (clinical isolate), Gram-negative bacterium Pseudomonas aeruginosa (ATCC 44752), and Gram-positive bacterium Staphylococcus aureus (ATCC 25923). Synthesized compounds showed higher antifungal activity than antibacterial activity, indicating that they could be used as selective antimicrobials. Selected thiepines efficiently inhibited Candida hyphae formation, a trait necessary for their pathogenicity. Thiepine 8-phenyl[1]benzothiepino[3,2-c]pyridine (16) efficiently killed Candida albicans at 15.6 µg/mL and showed no embryotoxicity at 75 µg/mL. Derivative 8-[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl][1]benzothiepino[3,2-c]pyridine (23) caused significant hemolysis and in vitro DNA interaction. The position of the phenyl ring was essential for the antifungal activity, while the electronic effects of the substituents did not significantly influence activity. Results obtained from in vivo embryotoxicity on zebrafish (Danio rerio) encourage further structure optimizations.
Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Benzotiepinas/química , Candida/efeitos dos fármacos , Piridinas/química , Animais , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Análise Espectral/métodos , Staphylococcus aureus/efeitos dos fármacos , Peixe-ZebraRESUMO
The syntheses and antiplasmodial activities of various substituted aminoquinolines coupled to an adamantane carrier are described. The compounds exhibited pronounced in vitro and in vivo activity against Plasmodium berghei in the Thompson test. Tethering a fluorine atom to the aminoquinoline C(3) position afforded fluoroaminoquinolines that act as intrahepatocytic parasite inhibitors, with compound 25 having an IC50 = 0.31 µM and reducing the liver load in mice by up to 92% at 80 mg/kg dose. Screening our peroxides as inhibitors of liver stage infection revealed that the tetraoxane pharmacophore itself is also an excellent liver stage P. berghei inhibitor (78: IC50 = 0.33 µM). Up to 91% reduction of the parasite liver load in mice was achieved at 100 mg/kg. Examination of tetraoxane 78 against the transgenic 3D7 strain expressing luciferase under a gametocyte-specific promoter revealed its activity against stage IV-V Plasmodium falciparum gametocytes (IC50 = 1.16 ± 0.37 µM). To the best of our knowledge, compounds 25 and 78 are the first examples of either an 4-aminoquinoline or a tetraoxane liver stage inhibitors.
Assuntos
Aminoquinolinas/síntese química , Aminoquinolinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/farmacologia , Tetraoxanos/síntese química , Tetraoxanos/farmacologia , Aminoquinolinas/metabolismo , Animais , Antimaláricos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Hemina/antagonistas & inibidores , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/parasitologia , Camundongos , Microssomos Hepáticos/metabolismo , Carga Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tetraoxanos/metabolismoRESUMO
A simple approach to aromatization of steroidal quinols and epoxyquinols using a catalytic amount of TMSOTf is reported. Beside acetylation of the angular OH, the acid-catalyzed (TfOH) dienone-phenol rearrangement occurred affording "para" products, or in the case of blocked position 4, the acetoxy group 1,2-migration leads to the formation of "meta" products. Using epoxyquinol derivative as a substrate, the acetoxy group elimination was observed, followed by acid-catalyzed epoxy-ring opening and subsequent double bond migration, giving as a final product Delta(9,11)A-ring aromatized compounds. Synthesis of conduritol-like compounds and structure confirmation by X-ray crystallography of the precursor of steroidal conduritol is also described. In addition, the results of extensive antiproliferative screening against a panel of 60 cancer cell lines are presented.
Assuntos
Cicloexanóis/síntese química , Cicloexanóis/farmacologia , Hidrocarbonetos Aromáticos/síntese química , Hidrocarbonetos Aromáticos/farmacologia , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cicloexanóis/química , Cicloexenos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrocarbonetos Aromáticos/química , Hidroquinonas/química , Estrutura MolecularRESUMO
Herein we report on a diazachrysene class of small molecules that exhibit potent antiviral activity against the Ebola (EBOV) virus. The antiviral compounds are easily synthesized, and the most active compounds have excellent in vitro activity (0.34-0.70 µM) and are significantly less lipophilic than their predecessors. The three most potent diazachrysene antivirals do not exhibit any toxicity in vivo and protected 70-90% of the mice at 10 mg/kg following EBOV challenge. Together, these studies suggest that diazachrysenes are a promising class of compounds for hit to lead optimization and as potential Ebola therapeutics.