Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 129, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643099

RESUMO

The α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this work, we produced quantitative data on four different isolates: B. diazoefficens USDA110, B. diazoefficiens USDA122, B. japonicum E109 and B. japonicum USDA6 which are representative of specific genomic profiles. Notably, we found conserved physiological traits conserved in all the studied isolates: (i) the lag and initial exponential growth phases display cell aggregation; (ii) the increase in specific nutrient concentration such as yeast extract and gluconate hinders growth; (iii) cell size does not correlate with culture age; and (iv) cell cycle presents polar growth. Meanwhile, fitness, cell size and in vitro growth widely vary across isolates correlating to ribosomal RNA operon number. In summary, this study provides novel empirical data that enriches the comprehension of the Bradyrhizobium (slow) growth dynamics and cell cycle.


Assuntos
Bradyrhizobium , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Glycine max , Fenômenos Fisiológicos Celulares , Fenótipo , Simbiose
2.
Environ Microbiol ; 25(7): 1232-1237, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36856667

RESUMO

Nearly 100 years ago, Winogradsky published a classic communication in which he described two groups of microbes, zymogenic and autochthonous. When organic matter penetrates the soil, zymogenic microbes quickly multiply and degrade it, then giving way to the slow combustion of autochthonous microbes. Although the text was originally written in French, it is often cited by English-speaking authors. We undertook a complete translation of the 1924 publication, which we provide as Supporting information. Here, we introduce the translation and describe how the zymogenic/autochthonous dichotomy shaped research questions in the study of microbial diversity and physiology. We also identify in the literature three additional and closely related dichotomies, which we propose to call exclusive copiotrophs/oligotrophs, coexisting copiotrophs/oligotrophs and fast-growing/slow-growing microbes. While Winogradsky focussed on a successional view of microbial populations over time, the current discussion is focussed on the differences in the specific growth rate of microbes as a function of the concentration of a given limiting substrate. In the future, it will be relevant to keep in mind both nutrient-focussed and time-focussed microbial dichotomies and to design experiments with both isolated laboratory cultures and multi-species communities in the spirit of Winogradsky's direct method.


Assuntos
Bactérias , Microbiologia do Solo , Biodiversidade , Bactérias/classificação , Bactérias/citologia , Bactérias/metabolismo , Solo/química , Ecossistema
3.
Environ Microbiol ; 25(12): 3052-3063, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658654

RESUMO

Microbes are often discussed in terms of dichotomies such as copiotrophic/oligotrophic and fast/slow-growing microbes, defined using the characterisation of microbial growth in isolated cultures. The dichotomies are usually qualitative and/or study-specific, sometimes precluding clear-cut results interpretation. We can unravel microbial dichotomies as life history strategies by combining ecology theory with Monod curves, a laboratory mathematical tool of bacterial physiology that relates the specific growth rate of a microbe with the concentration of a limiting nutrient. Fitting of Monod curves provides quantities that directly correspond to key parameters in ecological theories addressing species coexistence and diversity, such as r/K selection theory, resource competition and community structure theory and the CSR triangle of life strategies. The resulting model allows us to reconcile the copiotrophic/oligotrophic and fast/slow-growing dichotomies as different subsamples of a life history strategy triangle that also includes r/K strategists. We also used the number of known carbon sources together with community structure theory to partially explain the diversity of heterotrophic microbes observed in metagenomics experiments. In sum, we propose a theoretical framework for the study of natural microbial communities that unifies several existing proposals. Its application would require the integration of metagenomics, metametabolomics, Monod curves and carbon source data.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Processos Heterotróficos , Metagenômica , Carbono
4.
Environ Microbiol ; 25(12): 3255-3268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813828

RESUMO

The guanine/cytosine (GC) content of prokaryotic genomes is species-specific, taking values from 16% to 77%. This diversity of selection for GC content remains contentious. We analyse the correlations between GC content and a range of phenotypic and genotypic data in thousands of prokaryotes. GC content integrates well with these traits into r/K selection theory when phenotypic plasticity is considered. High GC-content prokaryotes are r-strategists with cheaper descendants thanks to a lower average amino acid metabolic cost, colonize unstable environments thanks to flagella and a bacillus form and are generalists in terms of resource opportunism and their defence mechanisms. Low GC content prokaryotes are K-strategists specialized for stable environments that maintain homeostasis via a high-cost outer cell membrane and endospore formation as a response to nutrient deprivation, and attain a higher nutrient-to-biomass yield. The lower proteome cost of high GC content prokaryotes is driven by the association between GC-rich codons and cheaper amino acids in the genetic code, while the correlation between GC content and genome size may be partly due to functional diversity driven by r/K selection. In all, molecular diversity in the GC content of prokaryotes may be a consequence of ecological r/K selection.


Assuntos
Aminoácidos , Células Procarióticas , Composição de Bases , Aminoácidos/análise , Códon , Proteoma/genética
5.
BMC Biol ; 18(1): 43, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349767

RESUMO

BACKGROUND: In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined. RESULTS: We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains. CONCLUSIONS: The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.


Assuntos
Proteínas de Bactérias/metabolismo , Dosagem de Genes , Genes Bacterianos , Origem de Replicação , Proteínas Ribossômicas/metabolismo , Vibrio cholerae/genética , Replicação do DNA , DNA Bacteriano/fisiologia , Vibrio cholerae/crescimento & desenvolvimento
6.
Molecules ; 24(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234313

RESUMO

Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Oligonucleotídeos/química , Etilenos/química
7.
PLoS Genet ; 11(4): e1005156, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875621

RESUMO

The effects on cell physiology of gene order within the bacterial chromosome are poorly understood. In silico approaches have shown that genes involved in transcription and translation processes, in particular ribosomal protein (RP) genes, localize near the replication origin (oriC) in fast-growing bacteria suggesting that such a positional bias is an evolutionarily conserved growth-optimization strategy. Such genomic localization could either provide a higher dosage of these genes during fast growth or facilitate the assembly of ribosomes and transcription foci by keeping physically close the many components of these macromolecular machines. To explore this, we used novel recombineering tools to create a set of Vibrio cholerae strains in which S10-spec-α (S10), a locus bearing half of the ribosomal protein genes, was systematically relocated to alternative genomic positions. We show that the relative distance of S10 to the origin of replication tightly correlated with a reduction of S10 dosage, mRNA abundance and growth rate within these otherwise isogenic strains. Furthermore, this was accompanied by a significant reduction in the host-invasion capacity in Drosophila melanogaster. Both phenotypes were rescued in strains bearing two S10 copies highly distal to oriC, demonstrating that replication-dependent gene dosage reduction is the main mechanism behind these alterations. Hence, S10 positioning connects genome structure to cell physiology in Vibrio cholerae. Our results show experimentally for the first time that genomic positioning of genes involved in the flux of genetic information conditions global growth control and hence bacterial physiology and potentially its evolution.


Assuntos
Proteínas de Bactérias/genética , Ordem dos Genes , Genoma Bacteriano , Proteínas Ribossômicas/genética , Vibrio cholerae/patogenicidade , Animais , Drosophila melanogaster/microbiologia , Dosagem de Genes , Loci Gênicos , Vibrio cholerae/genética , Virulência/genética
8.
Antimicrob Agents Chemother ; 60(8): 4920-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270286

RESUMO

The increasing frequency of bacteria showing antimicrobial resistance (AMR) raises the menace of entering into a postantibiotic era. Horizontal gene transfer (HGT) is one of the prime reasons for AMR acquisition. Acinetobacter baumannii is a nosocomial pathogen with outstanding abilities to survive in the hospital environment and to acquire resistance determinants. Its capacity to incorporate exogenous DNA is a major source of AMR genes; however, few studies have addressed this subject. The transformation machinery as well as the factors that induce natural competence in A. baumannii are unknown. In this study, we demonstrate that naturally competent strain A118 increases its natural transformation frequency upon the addition of Ca(2+)or albumin. We show that comEA and pilQ are involved in this process since their expression levels are increased upon the addition of these compounds. An unspecific protein, like casein, does not reproduce this effect, showing that albumin's effect is specific. Our work describes the first specific inducers of natural competence in A. baumannii Overall, our results suggest that the main protein in blood enhances HGT in A. baumannii, contributing to the increase of AMR in this threatening human pathogen.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Cálcio/farmacologia , Infecção Hospitalar/microbiologia , Competência de Transformação por DNA/efeitos dos fármacos , Albumina Sérica/farmacologia , DNA/genética , Competência de Transformação por DNA/genética , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal/efeitos dos fármacos , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Humanos
9.
Mol Microbiol ; 91(4): 665-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24308271

RESUMO

Dam methylates GATC sequences in γ-proteobacteria genomes, regulating several cellular functions including replication. In Vibrio cholerae, which has two chromosomes, Dam is essential for viability, owing to its role in chr2 replication initiation. In this study, we isolated spontaneous mutants of V. cholerae that were able to survive the deletion of dam. In these mutants, homologous recombination and chromosome dimer resolution are essential, unless DNA mismatch repair is inactivated. Furthermore, the initiator of chr2 replication, RctB, is no longer required. We show that, instead, replication of chr2 is insured by spontaneous fusion with chr1 and piggybacking its replication machinery. We report that natural fusion of chr1 and chr2 occurred by two distinct recombination pathways: homologous recombination between repeated IS elements and site-specific recombination between dif sites. Lastly, we observed a preferential fusion of the two chromosomes in their terminus of replication.


Assuntos
Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana , Recombinação Genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/deficiência , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Vibrio cholerae/genética , Cromossomos Bacterianos , Replicação do DNA , Deleção de Genes
10.
Antimicrob Agents Chemother ; 57(6): 2467-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23478955

RESUMO

We studied a collection of 105 clinical enterobacteria with unusual phenotypes of quinolone susceptibility to analyze the occurrence of plasmid-mediated quinolone resistance (PMQR) and oqx genes and their implications for quinolone susceptibility. The oqxA and oqxB genes were found in 31/34 (91%) Klebsiella pneumoniae and 1/3 Klebsiella oxytoca isolates. However, the oqxA- and oqxB-harboring isolates lacking other known quinolone resistance determinants showed wide ranges of susceptibility to nalidixic acid and ciprofloxacin. Sixty of the 105 isolates (57%) harbored at least one PMQR gene [qnrB19, qnrB10, qnrB2, qnrB1, qnrS1, or aac(6')-Ib-cr)], belong to 8 enterobacterial species, and were disseminated throughout the country, and most of them were categorized as susceptible by the current clinical quinolone susceptibility breakpoints. We developed a disk diffusion-based method to improve the phenotypic detection of aac(6')-Ib-cr. The most common PMQR genes in our collection [qnrB19, qnrB10, and aac(6')-Ib-cr] were differentially distributed among enterobacterial species, and two different epidemiological settings were evident. First, the species associated with community-acquired infections (Salmonella spp. and Escherichia coli) mainly harbored qnrB19 (a unique PMQR gene) located in small ColE1-type plasmids that might constitute its natural reservoirs. qnrB19 was not associated with an extended-spectrum ß-lactamase phenotype. Second, the species associated with hospital-acquired infections (Enterobacter spp., Klebsiella spp., and Serratia marcescens) mainly harbored qnrB10 in ISCR1-containing class 1 integrons that may also have aac(6')-Ib-cr as a cassette within the variable region. These two PMQR genes were strongly associated with an extended-spectrum ß-lactamase phenotype. Therefore, this differential distribution of PMQR genes is strongly influenced by their linkage or lack of linkage to integrons.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/efeitos dos fármacos , Plasmídeos/genética , Quinolonas/farmacologia , Argentina , Proteínas de Bactérias/metabolismo , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Humanos , Integrons/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNA
11.
Trends Microbiol ; 31(9): 879-881, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495486

RESUMO

Antimicrobial resistance in Acinetobacter baumannii is a major concern. Natural transformation remains understudied as a horizontal gene transfer (HGT) mechanism for the spread of resistance genes. Recent work (Vesel et al.) reveals a profound impact of the state of donor DNA methylation with strong implications for HGT of resistance determinants in this worrisome pathogen.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Metilação , Antibacterianos , Transferência Genética Horizontal , Testes de Sensibilidade Microbiana
12.
mBio ; 14(2): e0343222, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36861972

RESUMO

It is unclear how gene order within the chromosome influences genome evolution. Bacteria cluster transcription and translation genes close to the replication origin (oriC). In Vibrio cholerae, relocation of s10-spc-α locus (S10), the major locus of ribosomal protein genes, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction in growth rate, fitness, and infectivity. To test the long-term impact of this trait, we evolved 12 populations of V. cholerae strains bearing S10 at an oriC-proximal or an oriC-distal location for 1,000 generations. During the first 250 generations, positive selection was the main force driving mutation. After 1,000 generations, we observed more nonadaptative mutations and hypermutator genotypes. Populations fixed inactivating mutations at many genes linked to virulence: flagellum, chemotaxis, biofilm, and quorum sensing. Throughout the experiment, all populations increased their growth rates. However, those bearing S10 close to oriC remained the fittest, indicating that suppressor mutations cannot compensate for the genomic position of the main ribosomal protein locus. Selection and sequencing of the fastest-growing clones allowed us to characterize mutations inactivating, among other sites, flagellum master regulators. Reintroduction of these mutations into the wild-type context led to a ≈10% growth improvement. In conclusion, the genomic location of ribosomal protein genes conditions the evolutionary trajectory of V. cholerae. While genomic content is highly plastic in prokaryotes, gene order is an underestimated factor that conditions cellular physiology and evolution. A lack of suppression enables artificial gene relocation as a tool for genetic circuit reprogramming. IMPORTANCE The bacterial chromosome harbors several entangled processes such as replication, transcription, DNA repair, and segregation. Replication begins bidirectionally at the replication origin (oriC) until the terminal region (ter) organizing the genome along the ori-ter axis gene order along this axis could link genome structure to cell physiology. Fast-growing bacteria cluster translation genes near oriC. In Vibrio cholerae, moving them away was feasible but at the cost of losing fitness and infectivity. Here, we evolved strains harboring ribosomal genes close or far from oriC. Growth rate differences persisted after 1,000 generations. No mutation was able to compensate for the growth defect, showing that ribosomal gene location conditions their evolutionary trajectory. Despite the high plasticity of bacterial genomes, evolution has sculpted gene order to optimize the ecological strategy of the microorganism. We observed growth rate improvement throughout the evolution experiment that occurred at expense of energetically costly processes such the flagellum biosynthesis and virulence-related functions. From the biotechnological point of view, manipulation of gene order enables altering bacterial growth with no escape events.


Assuntos
Vibrio cholerae , Vibrio cholerae/genética , Proteínas Ribossômicas/genética , Genoma Bacteriano , Mutação , Cromossomos , Proteínas de Bactérias/genética
13.
Antimicrob Agents Chemother ; 56(4): 1821-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22290975

RESUMO

Plasmids pPAB19-1, pPAB19-2, pPAB19-3, and pPAB19-4, isolated from Salmonella and Escherichia coli clinical strains from hospitals in Argentina, were completely sequenced. These plasmids include the qnrB19 gene and are 2,699, 3,082, 2,989, and 2,702 nucleotides long, respectively, and they share extensive homology among themselves and with other previously described small qnrB19-harboring plasmids. The genetic environment of qnrB19 in all four plasmids is identical to that in these other plasmids and in transposons such as Tn2012, Tn5387, and Tn5387-like. Nucleotide sequence comparisons among these and previously described plasmids showed a variable region characterized by being flanked by an oriT locus and a Xer recombination site. We propose that this arrangement could play a role in the evolution of plasmids and present a model for DNA swapping between plasmid molecules mediated by site-specific recombination events at oriT and a Xer target site.


Assuntos
Escherichia coli/genética , Plasmídeos/genética , Salmonella/genética , Argentina , Sequência de Bases , Evolução Biológica , DNA Bacteriano/genética , Infecções por Escherichia coli/microbiologia , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Recombinação Genética , Infecções por Salmonella/microbiologia
14.
Proc Natl Acad Sci U S A ; 106(32): 13230-5, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666539

RESUMO

Inhibition of bacterial gene expression by RNase P-directed cleavage is a promising strategy for the development of antibiotics and pharmacological agents that prevent expression of antibiotic resistance. The rise in multiresistant bacteria harboring AAC(6')-Ib has seriously limited the effectiveness of amikacin and other aminoglycosides. We have recently shown that recombinant plasmids coding for external guide sequences (EGS), short antisense oligoribonucleotides (ORN) that elicit RNase P-mediated cleavage of a target mRNA, induce inhibition of expression of aac(6')-Ib and concomitantly induce a significant decrease in the levels of resistance to amikacin. However, since ORN are rapidly degraded by nucleases, development of a viable RNase P-based antisense technology requires the design of nuclease-resistant RNA analog EGSs. We have assayed a variety of ORN analogs of which selected LNA/DNA co-oligomers elicited RNase P-mediated cleavage of mRNA in vitro. Although we found an ideal configuration of LNA/DNA residues, there seems not to be a correlation between number of LNA substitutions and level of activity. Exogenous administration of as low as 50 nM of an LNA/DNA co-oligomer to the hyperpermeable E. coli AS19 harboring the aac(6')-Ib inhibited growth in the presence of amikacin. Our experiments strongly suggest an RNase P-mediated mechanism in the observed antisense effect.


Assuntos
Acetiltransferases/antagonistas & inibidores , Amicacina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Ribonuclease P/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Bases , DNA/metabolismo , Endocitose/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Sci Rep ; 11(1): 4737, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637791

RESUMO

In a recent report by the Centers for Disease Control and Prevention (CDC), multidrug resistant (MDR) Acinetobacter baumannii is a pathogen described as an "urgent threat." Infection with this bacterium manifests as different diseases such as community and nosocomial pneumonia, bloodstream infections, endocarditis, infections of the urinary tract, wound infections, burn infections, skin and soft tissue infections, and meningitis. In particular, nosocomial meningitis, an unwelcome complication of neurosurgery caused by extensively-drug resistant (XDR) A. baumannii, is extremely challenging to manage. Therefore, understanding how A. baumannii adapts to different host environments, such as cerebrospinal fluid (CSF) that may trigger changes in expression of virulence factors that are associated with the successful establishment and progress of this infection is necessary. The present in-vitro work describes, the genetic changes that occur during A. baumannii infiltration into CSF and displays A. baumannii's expansive versatility to persist in a nutrient limited environment while enhancing several virulence factors to survive and persist. While a hypervirulent A. baumannii strain did not show changes in its transcriptome when incubated in the presence of CSF, a low-virulence isolate showed significant differences in gene expression and phenotypic traits. Exposure to 4% CSF caused increased expression of virulence factors such as fimbriae, pilins, and iron chelators, and other virulence determinants that was confirmed in various model systems. Furthermore, although CSF's presence did not enhance bacterial growth, an increase of expression of genes encoding transcription, translation, and the ATP synthesis machinery was observed. This work also explores A. baumannii's response to an essential component, human serum albumin (HSA), within CSF to trigger the differential expression of genes associated with its pathoadaptibility in this environment.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Líquido Cefalorraquidiano , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Animais , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Larva/microbiologia , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia , Albumina Sérica/farmacologia , Transcriptoma/efeitos dos fármacos , Fatores de Virulência/genética
16.
Int J Antimicrob Agents ; 53(4): 483-490, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30611868

RESUMO

The human pathogen Acinetobacter baumannii possesses high genetic plasticity and frequently acquires antimicrobial resistance genes. Here we investigated the role of natural transformation in these processes. Genomic DNA from different sources, including from carbapenem-resistant Klebsiella pneumoniae strains, was mixed with A. baumannii A118 cells. Selected transformants were analysed by whole-genome sequencing. In addition, bioinformatics analyses and in silico gene flow prediction were also performed to support the experimental results. Transformant strains included some that became resistant to carbapenems or changed their antimicrobial susceptibility profile. Foreign DNA acquisition was confirmed by whole-genome analysis. The acquired DNA most frequently identified corresponded to mobile genetic elements, antimicrobial resistance genes and operons involved in metabolism. Bioinformatics analyses and in silico gene flow prediction showed continued exchange of genetic material between A. baumannii and K. pneumoniae when they share the same habitat. Natural transformation plays an important role in the plasticity of A. baumannii and concomitantly in the emergence of multidrug-resistant strains.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Klebsiella pneumoniae/genética , Transformação Bacteriana/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Humanos , Sequências Repetitivas Dispersas/genética , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma
17.
Methods Mol Biol ; 1737: 89-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484589

RESUMO

RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5'-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells.


Assuntos
Bactérias/genética , Peptídeos Penetradores de Células/farmacologia , Oligorribonucleotídeos Antissenso/metabolismo , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/metabolismo , Ribonuclease P/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Oligorribonucleotídeos Antissenso/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética
18.
PLoS One ; 13(7): e0200651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001428

RESUMO

No-tillage crop production has revolutionized the agriculture worldwide. In our country more than 30 Mha are currently cultivated under no-till schemes, stressing the importance of this management system for crop production. It is widely recognized that soil microbiota is altered under different soil managements. In this regard the structure of Burkholderia populations is affected by soils management practices such as tillage, fertilization, or crop rotation. The stability of these structures, however, has not been evaluated under sustainable schemes where the impact of land practices could be less deleterious to physicochemical soils characteristics. In order to assess the structure of Burkholderia spp. populations in no-till schemes, culturable Burkholderia spp. strains were quantified and their biodiversity evaluated. Results showed that Burkholderia spp. biodiversity, but not their abundance, clearly displayed a dependence on agricultural managements. We also showed that biodiversity was mainly influenced by two soil factors: Total Organic Carbon and Total Nitrogen. Results showed that no-till schemes are not per se sufficient to maintain a richer Burkholderia spp. soil microbiota, and additional traits should be considered when sustainability of productive soils is a goal to fulfil productive agricultural schemes.


Assuntos
Biodiversidade , Burkholderia , Produção Agrícola , Microbiologia do Solo , Solo , Argentina , Burkholderia/classificação , Burkholderia/crescimento & desenvolvimento , Burkholderia/isolamento & purificação
19.
mBio ; 8(1)2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28246358

RESUMO

Recent works suggest that bacterial gene order links chromosome structure to cell homeostasis. Comparative genomics showed that, in fast-growing bacteria, ribosomal protein genes (RP) locate near the replication origin (oriC). We recently showed that Vibrio cholerae employs this positional bias as a growth optimization strategy: under fast-growth conditions, multifork replication increases RP dosage and expression. However, RP location may provide advantages in a dosage-independent manner: for example, the physical proximity of the many ribosomal components, in the context of a crowded cytoplasm, may favor ribosome biogenesis. To uncover putative dosage-independent effects, we studied isogenic V. cholerae derivatives in which the major RP locus, S10-spc-α (S10), was relocated to alternative genomic positions. When bacteria grew fast, bacterial fitness was reduced according to the S10 relative distance to oriC The growth of wild-type V. cholerae could not be improved by additional copies of the locus, suggesting a physiologically optimized genomic location. Slow growth is expected to uncouple RP position from dosage, since multifork replication does not occur. Under these conditions, we detected a fitness impairment when S10 was far from oriC Deep sequencing followed by marker frequency analysis in the absence of multifork replication revealed an up to 30% S10 dosage reduction associated with its relocation that closely correlated with fitness alterations. Hence, the impact of S10 location goes beyond a growth optimization strategy during feast periods. RP location may be important during the whole life cycle of this pathogen.IMPORTANCE The role of gene order within the bacterial chromosome is poorly understood. In fast growers, the location of genes linked with the expression of genetic information (i.e., transcription and translation) is biased toward oriC It was proposed that the location of these genes helps to maximize their expression by recruiting multifork replication during fast growth. Our results show that such genomic positioning impacts cell fitness beyond fast-growth conditions, probably across the whole life cycle of fast growers. Thus, the genomic position of key highly expressed genes, such as RP, was finely tuned during the evolution of fast-growing bacteria and may also be important in slow growers. In the near future, many more genes whose genomic position impacts bacterial phenotype will be described. These studies will contribute to discovery the rules of genome organization and application of them for the design of synthetic chromosomes and the creation of artificial life forms.


Assuntos
Replicação do DNA , Ordem dos Genes , Complexo de Reconhecimento de Origem , Proteínas Ribossômicas/genética , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/genética
20.
Biol Methods Protoc ; 1(1)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27857983

RESUMO

EGSs (external guide sequences) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Successful development of EGS technology depends on finding nucleotide analogs that resist degradation by nucleases present in biological fluids and the environment but still elicit RNase P-mediated degradation when forming a duplex with a target mRNA. Previous results suggested that locked nucleic acids (LNA)/DNA chimeric oligomers have these properties. LNA are now considered the first generation of compounds collectively known as bridged nucleic acids (BNA), modified ribonucleotides that contain a bridge at the 2',4'-position of the ribose. LNA and the second generation BNA, known as BNANC, differ in the chemical nature of the bridge. Chimeric oligomers containing LNA or BNANC and deoxynucleotide monomers in different configurations are nuclease resistant and could be excellent EGS compounds. However, not all configurations may be equally active as EGSs. RNase P cleavage assays comparing LNA/DNA and BNANC/DNA chimeric oligonucleotides that share identical nucleotide sequence but with different configurations were carried out using as target the amikacin resistance aac(6')-Ib mRNA. LNA/DNA gapmers with 5 and 3/4 LNA residues at the 5'- and 3'-ends, respectively, were the most efficient EGSs while all BNANC/DNA gapmers showed very poor activity. When the most efficient LNA/DNA gapmer was covalently bound to a cell penetrating peptide (CPP), the hybrid compound conserved the EGS activity as determined by RNase P cleavage assays and reduced the levels of resistance to amikacin when added to Acinetobacter baumannii cells in culture, an indication of cellular uptake and biological activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA