Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 38(9): 2619-2620, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35258549

RESUMO

SUMMARY: SomaticSiMu is an in silico simulator of single and double base substitutions, and single base insertions and deletions in an input genomic sequence to mimic mutational signatures. SomaticSiMu outputs simulated DNA sequences and mutational catalogues with imposed mutational signatures. The tool is the first mutational signature simulator featuring a graphical user interface, control of mutation rates and built-in visualization tools of the simulated mutations. Simulated datasets are useful as a ground truth to test the accuracy and sensitivity of DNA sequence classification tools and mutational signature extraction tools under different experimental scenarios. The reliability of SomaticSiMu was affirmed by (i) supervised machine learning classification of simulated sequences with different mutation types and burdens, and (ii) mutational signature extraction from simulated mutational catalogues. AVAILABILITY AND IMPLEMENTATION: SomaticSiMu is written in Python 3.8.3. The open-source code, documentation and tutorials are available at https://github.com/HillLab/SomaticSiMu under the terms of the CreativeCommonsAttribution4.0InternationalLicense. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Reprodutibilidade dos Testes , Mutação , Genoma
2.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640164

RESUMO

Conjugation is a bacterial mechanism for DNA transfer from a donor cell to a wide range of recipients, including both prokaryotic and eukaryotic cells. In contrast to conventional DNA delivery techniques, such as electroporation and chemical transformation, conjugation eliminates the need for DNA extraction, thereby preventing DNA damage during isolation. While most established conjugation protocols allow for DNA transfer in liquid media or on a solid surface, we developed a procedure for conjugation within solid media. Such a protocol may expand conjugation as a tool for DNA transfer to species that require semi-solid or solid media for growth. Conjugation within solid media could also provide a more stable microenvironment in which the conjugative pilus can establish and maintain contact with recipient cells for the successful delivery of plasmid DNA. Furthermore, transfer in solid media may enhance the ability to transfer plasmids and chromosomes greater than 100 kbp. Using our optimized method, plasmids of varying sizes were tested for transfer from Escherichia coli to Saccharomyces cerevisiae. We demonstrated that there was no significant change in conjugation frequency when plasmid size increased from 56.5 to 138.6 kbp in length. Finally, we established an efficient PCR-based synthesis protocol to generate custom conjugative plasmids.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Plasmídeos/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Conjugação Genética , Meios de Cultura/química , Escherichia coli/genética , Tamanho do Genoma , Saccharomyces cerevisiae/genética
3.
Sci Rep ; 13(1): 16105, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752120

RESUMO

This study provides comprehensive quantitative evidence suggesting that adaptations to extreme temperatures and pH imprint a discernible environmental component in the genomic signature of microbial extremophiles. Both supervised and unsupervised machine learning algorithms were used to analyze genomic signatures, each computed as the k-mer frequency vector of a 500 kbp DNA fragment arbitrarily selected to represent a genome. Computational experiments classified/clustered genomic signatures extracted from a curated dataset of [Formula: see text] extremophile (temperature, pH) bacteria and archaea genomes, at multiple scales of analysis, [Formula: see text]. The supervised learning resulted in high accuracies for taxonomic classifications at [Formula: see text], and medium to medium-high accuracies for environment category classifications of the same datasets at [Formula: see text]. For [Formula: see text], our findings were largely consistent with amino acid compositional biases and codon usage patterns in coding regions, previously attributed to extreme environment adaptations. The unsupervised learning of unlabelled sequences identified several exemplars of hyperthermophilic organisms with large similarities in their genomic signatures, in spite of belonging to different domains in the Tree of Life.


Assuntos
Extremófilos , Extremófilos/genética , Genômica/métodos , Bactérias/genética , Archaea/genética , Genoma Arqueal/genética
4.
Biodes Res ; 2022: 9802168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850145

RESUMO

Fungi are nature's recyclers, allowing for ecological nutrient cycling and, in turn, the continuation of life on Earth. Some fungi inhabit the human microbiome where they can provide health benefits, while others are opportunistic pathogens that can cause disease. Yeasts, members of the fungal kingdom, have been domesticated by humans for the production of beer, bread, and, recently, medicine and chemicals. Still, the great untapped potential exists within the diverse fungal kingdom. However, many yeasts are intractable, preventing their use in biotechnology or in the development of novel treatments for pathogenic fungi. Therefore, as a first step for the domestication of new fungi, an efficient DNA delivery method needs to be developed. Here, we report the creation of superior conjugative plasmids and demonstrate their transfer via conjugation from bacteria to 7 diverse yeast species including the emerging pathogen Candida auris. To create our superior plasmids, derivatives of the 57 kb conjugative plasmid pTA-Mob 2.0 were built using designed gene deletions and insertions, as well as some unintentional mutations. Specifically, a cluster mutation in the promoter of the conjugative gene traJ had the most significant effect on improving conjugation to yeasts. In addition, we created Golden Gate assembly-compatible plasmid derivatives that allow for the generation of custom plasmids to enable the rapid insertion of designer genetic cassettes. Finally, we demonstrated that designer conjugative plasmids harboring engineered restriction endonucleases can be used as a novel antifungal agent, with important applications for the development of next-generation antifungal therapeutics.

5.
PLoS One ; 15(4): e0232391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330208

RESUMO

The 2019 novel coronavirus (renamed SARS-CoV-2, and generally referred to as the COVID-19 virus) has spread to 184 countries with over 1.5 million confirmed cases. Such major viral outbreaks demand early elucidation of taxonomic classification and origin of the virus genomic sequence, for strategic planning, containment, and treatment. This paper identifies an intrinsic COVID-19 virus genomic signature and uses it together with a machine learning-based alignment-free approach for an ultra-fast, scalable, and highly accurate classification of whole COVID-19 virus genomes. The proposed method combines supervised machine learning with digital signal processing (MLDSP) for genome analyses, augmented by a decision tree approach to the machine learning component, and a Spearman's rank correlation coefficient analysis for result validation. These tools are used to analyze a large dataset of over 5000 unique viral genomic sequences, totalling 61.8 million bp, including the 29 COVID-19 virus sequences available on January 27, 2020. Our results support a hypothesis of a bat origin and classify the COVID-19 virus as Sarbecovirus, within Betacoronavirus. Our method achieves 100% accurate classification of the COVID-19 virus sequences, and discovers the most relevant relationships among over 5000 viral genomes within a few minutes, ab initio, using raw DNA sequence data alone, and without any specialized biological knowledge, training, gene or genome annotations. This suggests that, for novel viral and pathogen genome sequences, this alignment-free whole-genome machine-learning approach can provide a reliable real-time option for taxonomic classification.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Genoma Viral , Aprendizado de Máquina , Pneumonia Viral/virologia , Betacoronavirus/classificação , COVID-19 , Infecções por Coronavirus/epidemiologia , Genômica , Humanos , Pandemias , Pneumonia Viral/epidemiologia , SARS-CoV-2
6.
Genes (Basel) ; 10(2)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678093

RESUMO

Yeasts belonging to the Metschnikowia genus are particularly interesting for the unusual formation of only two needle-shaped ascospores during their mating cycle. Presently, the meiotic process that can lead to only two spores from a diploid zygote is poorly understood. The expression of fluorescent nuclear proteins should allow the meiotic process to be visualized in vivo; however, no large-spored species of Metschnikowia has ever been transformed. Accordingly, we aimed to develop a transformation method for Metschnikowiaborealis, a particularly large-spored species of Metschnikowia, with the goal of enabling the genetic manipulations required to study biological processes in detail. Genetic analyses confirmed that M. borealis, and many other Metschnikowia species, are CUG-Ser yeasts. Codon-optimized selectable markers lacking CUG codons were used to successfully transform M. borealis by electroporation and lithium acetate, and transformants appeared to be the result of random integration. Mating experiments confirmed that transformed-strains were capable of generating large asci and undergoing recombination. Finally, random integration was used to transform an additional 21 yeast strains, and all attempts successfully generated transformants. The results provide a simple method to transform many yeasts from an array of different clades and can be used to study or develop many species for various applications.


Assuntos
Técnicas de Transferência de Genes , Transformação Genética , Leveduras/genética , Códon/genética , Eletroporação/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA