Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(2): 2102-2111, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785231

RESUMO

Traditional OAM generation devices are bulky and can generally only create OAM with one specific topological charge. Although metasurface-based devices have overcome the volume limitations, no tunable metasurface-based OAM generators have been demonstrated to date. Here, a dynamically tunable multi-topological charge OAM generator based on an ultrathin integrable graphene metalens is demonstrated by simulation using the detour phase technique and spatial multiplexing. Different topological charges can be designed on different focal planes. Stretching the OAM graphene metalens allows the focal plane and the topological values to be changed dynamically. This design method paves an innovative route toward miniaturization and integrating OAM beam-type photonic devices for practical applications.

2.
Opt Express ; 31(5): 7321-7335, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859866

RESUMO

Tamm plasmon polaritons (TPPs) arise from electromagnetic resonant phenomena which appear at the interface between a metallic film and a distributed Bragg reflector. They differ from surface plasmon polaritons (SPPs), since TPPs possess both cavity mode properties and surface plasmon characteristics. In this paper, the propagation properties of TPPs are carefully investigated. With the aid of nanoantenna couplers, polarization-controlled TPP waves can propagate directionally. By combining nanoantenna couplers with Fresnel zone plates, asymmetric double focusing of TPP wave is observed. Moreover, radial unidirectional coupling of the TPP wave can be achieved when the nanoantenna couplers are arranged along a circular or a spiral shape, which shows superior focusing ability compared to a single circular or spiral groove since the electric field intensity at the focal point is 4 times larger. In comparison with SPPs, TPPs possess higher excitation efficiency and lower propagation loss. The numerical investigation shows that TPP waves have great potential in integrated photonics and on-chip devices.

3.
Opt Express ; 30(20): 35085-35095, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258468

RESUMO

Light modulation has been recognized as one of the most fundamental operations in photonics. In this paper, we theoretically designed a Bloch surface wave assisted modulator for the active modulation of graphene electro-absorption. Simulations show that the strong localized electrical field generated by Bloch surface waves can significantly enhance the graphene electro-absorption up to 99.64%. Then by gate-tuning the graphene Fermi energy to transform graphene between a lossy and a lossless material, electrically switched absorption of graphene with maximum modulation depth of 97.91% can be achieved. Meanwhile, by further adjusting the incident angle to tune the resonant wavelength of Bloch surface waves, the center wavelength of the modulator can be actively controlled. This allows us to realize the active modulation of graphene electro-absorption within a wide near-infrared region, including the commercially important telecommunication wavelength of 1550 nm, indicating the excellent performance of the designed modulator via such mechanism. Such Bloch surface waves assisted wavelength-tunable graphene electro-absorption modulation strategy opens up a new avenue to design graphene-based selective multichannel modulators, which is unavailable in previous reported strategies that can be only realized by passively changing the structural parameters.

4.
Opt Express ; 30(8): 13459-13468, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472957

RESUMO

Metasurfaces offer diverse wavefront control by manipulating amplitude, phase, and polarization of light which is beneficial to design subwavelength scaled integrated photonic devices. Metasurfaces based tunable circular polarization (CP) beam splitting is one functionality of interest in polarization control. Here, we propose and numerically realize metasurface based spin tunable beam splitter which splits the incoming CP beam into two different directions and tune the splitting angles by switching the handedness of incident light polarization. The proposed design approach has potential in applications such as optical communication, multiplexing, and imaging.

5.
Opt Express ; 30(13): 23149-23162, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225001

RESUMO

This work presents an artificial intelligence enhanced orbital angular momentum (OAM) data transmission system. This system enables encoded data retrieval from speckle patterns generated by an incident beam carrying different topological charges (TCs) at the distal end of a multi-mode fiber. An appropriately trained network is shown to support up to 100 different fractional TCs in parallel with TC intervals as small as 0.01, thus overcoming the problems with previous methods that only supported a few modes and could not use small TC intervals. Additionally, an approach using multiple parallel neural networks is proposed that can increase the system's channel capacity without increasing individual network complexity. When compared with a single network, multiple parallel networks can achieve the better performance with reduced training data requirements, which is beneficial in saving computational capacity while also expanding the network bandwidth. Finally, we demonstrate high-fidelity image transmission using a 16-bit system and four parallel 14-bit systems via OAM mode multiplexing through a 1-km-long commercial multi-mode fiber (MMF).

6.
Opt Express ; 29(17): 27750-27759, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615184

RESUMO

Strong coupling between the resonant modes can give rise to many resonant states, enabling the manipulation of light-matter interactions with more flexibility. Here, we theoretically propose a coupled resonant system where an anisotropic borophene localized plasmonic (BLP) and Bloch surface wave (BSW) can be simultaneously excited. This allows us to manipulate the spectral response of the strong BLP-BSW coupling with exceptional flexibility in the near infrared region. Specifically, the strong longitudinal BLP-BSW coupling occurs when the system is driven into the strong coupling regime, which produces two hybrid modes with a large Rabi splitting up to 124 meV for borophene along both x- and y-directions. A coupled oscillator model is employed to quantitatively describe the observed BSW-BLP coupling by calculating the dispersion of the hybrid modes, which shows excellent agreement with the simulation results. Furthermore, benefited from the angle-dependent BSW mode, the BSW-BLP coupling can be flexibly tuned by actively adjusting the incident angle. Such active tunable BLP-SBW coupling with extreme flexibility offered by this simple layered system makes it promising for the development of diverse borophene-based active photonic and optoelectronic devices in the near infrared region.

7.
Opt Lett ; 46(4): 725-728, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577499

RESUMO

In this Letter, we theoretically propose a coupled borophene plasmonic system, where an anisotropic localized plasmonic (LP) mode and a delocalized guided plasmonic (DGP) mode can be simultaneously excited. This allows us to manipulate the optical response of the strong LP-DGP coupling with exceptional flexibility in the near-infrared region, which is not possible with the conventional metallic plasmonic structures, and overcomes some shortcomings of coupled structures based on the other 2D materials. Specifically, the spatially LP-DGP coupling can arise when the system is driven into the strong coupling regime; this gives rise to a transparency window which can be well described by a coupled oscillation model. The bandwidth of the window is governed by the coupling strength which can be passively adjusted by the spacer thickness, while the center wavelength and the number of windows can be actively modulated by tuning the borophene electron density and the incident angle.

8.
Opt Express ; 28(22): 32777-32792, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114955

RESUMO

The reflected back focal plane from a microscope objective is known to provide excellent information of material properties and can be used to analyze the generation of surface plasmons and surface waves in a localized region. Most analysis has concentrated on direct measurement of the reflected intensity in the back focal plane. By accessing the phase information, we show that examination in the back focal plane becomes considerably more powerful allowing the reconstructed field to be filtered, propagated and analyzed in different domains. Moreover, the phase often gives a superior measurement that is far easier to use in the assessment of the sample, an example of such cases is examined in the present paper. We discuss how the modified defocus phase retrieval algorithm has the potential for real time measurements with parallel image acquisition since only three images are needed for reliable retrieval of arbitrary distributions.

9.
Opt Express ; 27(20): 27536-27545, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684519

RESUMO

Bloch surface wave (BSW) can be considered as the dielectric analogue of surface plasmon polariton (SPP) with less loss since it is sustained at the surface of a truncated dielectric multilayer. As dielectric materials show nearly no ohmic loss, BSW can propagates much farther compared to SPP, and thus is beneficial for planar optical devices. In this paper, we study the spin-orbital interaction between incident beam and BSW. We demonstrate that due to the spin-orbital coupling, the near-field properties of generated BSW can be controlled with a meta-antenna structure. The meta-antenna is composed of two gold nano-antennas oriented at 45° and 135° as a near-field coupler. By careful design of the meta-antenna, the generated BSW can be guided and focused depending on the chirality of the incident beam. Three examples of meta-antennas are demonstrated for chiral sensitive focusing, directional switching and asymmetric focusing. The proposed method can be applied as a design method for low-loss on-chip photonic devices.

10.
Opt Lett ; 44(16): 4083-4086, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415552

RESUMO

In this Letter, we present a spatially resolved pump-probe microscope based on a digital micromirror device (DMD). The microscope system enables the measurements of ultrafast transient processes at arbitrarily selected regions in a 3-D specimen. To achieve random-access scanning, the wavefront of the probe beam is modulated by the DMD via binary holography. By switching the holograms stored in the DMD memory, the laser focus can be rapidly moved in space in a discrete fashion. The microscope system has a field of view of 65×130×155 µm3 in the x, y, and z axes, respectively; and a scanning speed of 8 kHz which is limited by the response time of the lock-in amplifier. To demonstrate the pump-probe system, we measured the ultrafast transient reflectivity of 2-D gold patterns on a silicon substrate and on silicon nitride cantilever beams. The results show an excellent signal-to-noise ratio and spatial-temporal resolution, as well as the 3-D random scanning capability. The new pump-probe microscope is a versatile instrument to characterize ultrafast 3-D phenomena with high spatial and temporal resolution, e.g., the propagation of localized surface plasmon resonance on curved surfaces.

11.
Appl Opt ; 58(25): 6920-6925, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503670

RESUMO

The light reflected into the back focal plane of a microscope objective allows one to gather a great deal of information about the resonant modes excited on a sample. These dips represent modes excited on the sample, which are related to both the material properties and the structure. Automatic identification of these resonances is a vital stage in developing automated machine-learning techniques for high-throughput sample characterization. In previous work, identification of a single isolated mode was demonstrated; here we show how multiple modes can be separately identified using an automated centering procedure in a process we call radial thresholding. Once the center was determined, the radial thresholding process was modified and combined with interpolation to locate the precise modal positions. We show that this method is capable of resolving very closely spaced modes and is sensitive to nanometric changes in sample dimensions. The processing time for the method is sufficiently fast to ensure that it is suited for rapid sample identification.

12.
Opt Lett ; 43(23): 5797-5800, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499944

RESUMO

A lateral shearing interferometric technique combined with an 11.6 µm polydimethylsiloxane (PDMS) transparent thin film is proposed and demonstrated for optical detection of ultrasound. We experimentally report the device change of reflectivity with pressure of 5.1×10-7 Pa-1, 9.5 times more sensitive than the critical-angle-based sensor, 31 times more sensitive than the surface-plasmon-based sensor, and comparable to the Fabry-Perot sensor. The objective-lens-based angle scanning characterization setup inspired from a laser scanning system allows direct comparison between the PDMS sensor and critical-angle-based sensor by adjusting the incident angle with a scanning mirror, thereby eliminating optical and electronics system dependence. The sensing element is easily fabricated through spin coating and the detection element incorporated into an existing optical system with minimum modification.

13.
Opt Lett ; 43(14): 3245-3248, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004477

RESUMO

We present a common-path surface plasmon interferometer with radial polarization. We show how the V(z) effect, the output of the microscope versus defocus z, can be derived utilizing a radially polarized illumination and a virtual annulus. The measurement of the V(z) effect gives a strong signature of the surface plasmon propagation, which is functionally related to the material properties. We discuss the advantages of using radial polarization compared to linear polarization.

14.
Opt Lett ; 43(18): 4453-4456, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211888

RESUMO

The localized properties of surface plasmons (SPs) and surface waves can be measured with a modified confocal microscope. An interference signal arises from a locally generated reference close to normal incidence and the beam that forms the surface wave. A spatial light modulator can impose different phase shifts on the part of the incident light to recover the properties of the SP. We report a Hilbert transform method to recover the wavenumber with a single shot. The method is faster and potentially less expensive than previous approaches. The signal-to-noise ratio is equivalent to the phase-stepping method. The signal processing necessary to condition the signal is described.

15.
Appl Opt ; 57(13): 3453-3462, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726514

RESUMO

We investigate the performance of surface plasmon and Fabry-Perot modes formed between two closely spaced layers. The motivation for this study is twofold: first, to look for modes that may be excited at lower incident angles compared to the usual Kretschmann configuration with similar or superior refractive index responsivity and, second, to develop a simple and applicable method to study these structures over a wide range of separations without recourse to the construction of ad hoc structures. Using back focal plane observation and appropriate signal processing, we show results for the Otto configuration at visible wavelengths at a range of separations not reported hitherto. Moreover, we investigate a hybrid structure we call the Kretschmann-Otto configuration that gives modes that change continuously from a hybridized surface plasmon mode to a zero-order Fabry-Perot mode. The ability to change the separation to small gap distances enables us to examine the Fabry-Perot modes where we show that it has superior refractive index responsivity, by more than an order of magnitude, compared to the Kretschmann configuration.

16.
Opt Express ; 25(25): 31552-31567, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245829

RESUMO

This paper describes theoretical and experimental study of the fundamentals of using surface plasmon resonance (SPR) for label-free detection of voltage. Plasmonic voltage sensing relies on the capacitive properties of metal-electrolyte interface that are governed by electrostatic interactions between charge carriers in both phases. Externally-applied voltage leads to changes in the free electron density in the surface of the metal, shifting the SPR position. The study shows the effects of the applied voltage on the shape of the SPR curve. It also provides a comparison between the theoretical and experimental response to the applied voltage. The response is presented in a universal term that can be used to assess the voltage sensitivity of different SPR instruments. Finally, it demonstrates the capacity of the SPR system in resolving dynamic voltage signals; a detection limit of 10mV with a temporal resolution of 5ms is achievable. These findings pave the way for the use of SPR systems in the detection of electrical activity of biological cells.

17.
Opt Lett ; 42(21): 4569-4572, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088215

RESUMO

In this Letter, we show how to obtain high-contrast wide-field evanescent wave illuminated subdiffraction imaging through controlling nanoscale light-matter interaction. The light coupling, propagation, and far-field imaging processes show strong polarization selectivity and film quality dependence, which is used to improve the image-contrast-to-noise ratio (CNR) and to enlarge the field of view (FOV). We demonstrate experimentally high CNR subdiffraction imaging with lateral resolution of 122 nm and FOV of thousands of micrometers square.

18.
Opt Express ; 24(10): 10797-805, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409900

RESUMO

In previous work we demonstrated how a confocal microscope with a spatial light modulator in the back focal plane could perform accurate measurement of the k-vector of a propagating surface plasmon. This involved forming an embedded interferometer between light incident close to normal incidence (reference beam) and light incident at the angle to excite surface plasmons (sample beam). The signal from the interferometer was extracted by stepping the phase of the reference beam relative to the sample beam using a spatial light modulator; this requires at least 3 phase steps, which limits the speed of operation. To overcome this and extract the same information with a single measurement, we project an azimuthal varying phase between 0 and 2π in the central region of the back focal plane; corresponding to small angles of incidence. This projects a vortex beam as the reference, so that the phase of the reference beam varies with azimuthal angle. By extracting the interference signal from different portions of the reference beam, different phase steps between the reference and the sample are obtained, so all the values required for phase reconstruction can be extracted simultaneously. It is thus possible to obtain the same information with a single shot measurement, at each defocus position, without additional changes to the back focal plane illumination. Results are presented to show that the vortex illuminated sample provides similar results to the phase stepped version, whose values are, in turn, validated with ellipsometry and surface profilometry.

19.
Opt Express ; 24(17): 19517-30, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557229

RESUMO

We demonstrate numerically through rigorous coupled wave analysis (RCWA) that replacing the prism in the Otto configuration with gratings enables us to excite and control different modes and field patterns of surface phonon polaritons (SPhPs) through the incident wavelength and height of the Otto spacing layer. This modified Otto configuration provides us the following multiple modes, namely, SPhP mode, Fabry-Pérot (FP) cavity resonance, dielectric waveguide grating resonance (DWGR) and hybridized between different combinations of the above mentioned modes. We show that this modified grating-coupled Otto configuration has a highly confined field pattern within the structure, making it more sensitive to local refractive index changes on the SiC surface. The hybridized surface phonon polariton modes also provide a stronger field enhancement compared to conventional pure mode excitation.

20.
Mol Pharm ; 12(11): 3862-70, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26402436

RESUMO

In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 µm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.


Assuntos
Coloides/química , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Polímeros/química , Células 3T3 , Animais , Fluorescência , Camundongos , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA