Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 38(9): 2065-2078, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026274

RESUMO

Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.


Assuntos
Pressão Sanguínea/fisiologia , Caveolina 1/metabolismo , Conexinas/metabolismo , Homeostase , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Trifosfato de Adenosina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Masculino , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/inervação , Fenilefrina/farmacologia , Sistema Nervoso Simpático/fisiologia , Vasoconstrição/fisiologia
2.
J Biol Chem ; 291(39): 20353-71, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27481945

RESUMO

RHO GTPase-activating proteins (RHOGAPs) are one of the major classes of regulators of the RHO-related protein family that are crucial in many cellular processes, motility, contractility, growth, differentiation, and development. Using database searches, we extracted 66 distinct human RHOGAPs, from which 57 have a common catalytic domain capable of terminating RHO protein signaling by stimulating the slow intrinsic GTP hydrolysis (GTPase) reaction. The specificity of the majority of the members of RHOGAP family is largely uncharacterized. Here, we comprehensively investigated the sequence-structure-function relationship between RHOGAPs and RHO proteins by combining our in vitro data with in silico data. The activity of 14 representatives of the RHOGAP family toward 12 RHO family proteins was determined in real time. We identified and structurally verified hot spots in the interface between RHOGAPs and RHO proteins as critical determinants for binding and catalysis. We have found that the RHOGAP domain itself is nonselective and in some cases rather inefficient under cell-free conditions. Thus, we propose that other domains of RHOGAPs confer substrate specificity and fine-tune their catalytic efficiency in cells.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas rho de Ligação ao GTP/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Domínios Proteicos , Relação Estrutura-Atividade , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
3.
J Biol Chem ; 290(16): 10353-67, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733666

RESUMO

This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.


Assuntos
Miócitos de Músculo Liso/metabolismo , Pericárdio/metabolismo , Células-Tronco/metabolismo , Proteínas rho de Ligação ao GTP/genética , Animais , Diferenciação Celular , Embrião de Mamíferos , Transição Epitelial-Mesenquimal/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Miócitos de Músculo Liso/citologia , Pericárdio/citologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Técnicas de Cultura de Tecidos , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
4.
Arterioscler Thromb Vasc Biol ; 34(12): 2594-600, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25278292

RESUMO

OBJECTIVE: Hemoglobin α (Hb α) and endothelial nitric oxide synthase (eNOS) form a macromolecular complex at myoendothelial junctions; the functional role of this interaction remains undefined. To test if coupling of eNOS and Hb α regulates nitric oxide signaling, vascular reactivity, and blood pressure using a mimetic peptide of Hb α to disrupt this interaction. APPROACH AND RESULTS: In silico modeling of Hb α and eNOS identified a conserved sequence of interaction. By mutating portions of Hb α, we identified a specific sequence that binds eNOS. A mimetic peptide of the Hb α sequence (Hb α X) was generated to disrupt this complex. Using in vitro binding assays with purified Hb α and eNOS and ex vivo proximity ligation assays on resistance arteries, we have demonstrated that Hb α X significantly decreased interaction between eNOS and Hb α. Fluorescein isothiocyanate labeling of Hb α X revealed localization to holes in the internal elastic lamina (ie, myoendothelial junctions). To test the functional effects of Hb α X, we measured cyclic guanosine monophosphate and vascular reactivity. Our results reveal augmented cyclic guanosine monophosphate production and altered vasoconstriction with Hb α X. To test the in vivo effects of these peptides on blood pressure, normotensive and hypertensive mice were injected with Hb α X, which caused a significant decrease in blood pressure; injection of Hb α X into eNOS(-/-) mice had no effect. CONCLUSIONS: These results identify a novel sequence on Hb α that is important for Hb α/eNOS complex formation and is critical for nitric oxide signaling at myoendothelial junctions.


Assuntos
Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Vasoconstrição/fisiologia , alfa-Globinas/metabolismo , Sequência de Aminoácidos , Animais , Pressão Sanguínea/fisiologia , Células Cultivadas , Simulação por Computador , Sequência Conservada , Células Endoteliais/metabolismo , Humanos , Junções Intercelulares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Resistência Vascular/fisiologia , alfa-Globinas/química , alfa-Globinas/genética
5.
Arterioscler Thromb Vasc Biol ; 34(7): 1486-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24790136

RESUMO

OBJECTIVE: Small GTPase Ras-related protein 1 (Rap1b) controls several basic cellular phenomena, and its deletion in mice leads to several cardiovascular defects, including impaired adhesion of blood cells and defective angiogenesis. We found that Rap1b(-/-) mice develop cardiac hypertrophy and hypertension. Therefore, we examined the function of Rap1b in regulation of blood pressure. APPROACH AND RESULTS: Rap1b(-/-) mice developed cardiac hypertrophy and elevated blood pressure, but maintained a normal heart rate. Correcting elevated blood pressure with losartan, an angiotensin II type 1 receptor antagonist, alleviated cardiac hypertrophy in Rap1b(-/-) mice, suggesting a possibility that cardiac hypertrophy develops secondary to hypertension. The indices of renal function and plasma renin activity were normal in Rap1b(-/-) mice. Ex vivo, we examined whether the effect of Rap1b deletion on smooth muscle-mediated vessel contraction and endothelium-dependent vessel dilation, 2 major mechanisms controlling basal vascular tone, was the basis for the hypertension. We found increased contractility on stimulation with a thromboxane analog or angiotensin II or phenylephrine along with increased inhibitory phosphorylation of myosin phosphatase under basal conditions consistent with elevated basal tone and the observed hypertension. Cyclic adenosine monophosphate-dependent relaxation in response to Rap1 activator, Epac, was decreased in vessels from Rap1b(-/-) mice. Defective endothelial release of dilatory nitric oxide in response to elevated blood flow leads to hypertension. We found that nitric oxide-dependent vasodilation was significantly inhibited in Rap1b-deficient vessels. CONCLUSIONS: This is the first report to indicate that Rap1b in both smooth muscle and endothelium plays a key role in maintaining blood pressure by controlling normal vascular tone.


Assuntos
Pressão Sanguínea , Células Endoteliais/enzimologia , Hipertensão/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Vasoconstrição , Vasodilatação , Proteínas rap de Ligação ao GTP/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/enzimologia , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Proteínas rap de Ligação ao GTP/deficiência , Proteínas rap de Ligação ao GTP/genética
6.
J Biol Chem ; 288(47): 34030-34040, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106280

RESUMO

Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca(2+)]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca(2+) sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca(2+)-sensitized force are not well understood. Using permeabilized blood vessels from PRG(-/-) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca(2+)-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5'-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca(2+) transient and phasic force components and the onset of Ca(2+)-sensitized force.


Assuntos
Cálcio/metabolismo , Fatores de Troca do Nucleotídeo Guanina/agonistas , Guanosina 5'-O-(3-Tiotrifosfato)/análogos & derivados , Fenilefrina/análogos & derivados , Fatores de Troca de Nucleotídeo Guanina Rho/agonistas , Animais , Linhagem Celular , Inativação Gênica/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Humanos , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Fenilefrina/farmacologia , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Coelhos , Ratos , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/genética , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289985

RESUMO

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Assuntos
Hipertensão , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular , Proliferação de Células/fisiologia , Conexinas/metabolismo , Peróxido de Hidrogênio/farmacologia , Obesidade , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fatores de Transcrição/metabolismo
8.
J Biol Chem ; 287(25): 20975-85, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22544752

RESUMO

Phospho-telokin is a target of elevated cyclic nucleotide concentrations that lead to relaxation of gastrointestinal and some vascular smooth muscles (SM). Here, we demonstrate that in telokin-null SM, both Ca(2+)-activated contraction and Ca(2+) sensitization of force induced by a GST-MYPT1(654-880) fragment inhibiting myosin light chain phosphatase were antagonized by the addition of recombinant S13D telokin, without changing the inhibitory phosphorylation status of endogenous MYPT1 (the regulatory subunit of myosin light chain phosphatase) at Thr-696/Thr-853 or activity of Rho kinase. Cyclic nucleotide-induced relaxation of force in telokin-null ileum muscle was reduced but not correlated with a change in MYPT1 phosphorylation. The 40% inhibited activity of phosphorylated MYPT1 in telokin-null ileum homogenates was restored to nonphosphorylated MYPT1 levels by addition of S13D telokin. Using the GST-MYPT1 fragment as a ligand and SM homogenates from WT and telokin KO mice as a source of endogenous proteins, we found that only in the presence of endogenous telokin, thiophospho-GST-MYPT1 co-precipitated with phospho-20-kDa myosin regulatory light chain 20 and PP1. Surface plasmon resonance studies showed that S13D telokin bound to full-length phospho-MYPT1. Results of a protein ligation assay also supported interaction of endogenous phosphorylated MYPT1 with telokin in SM cells. We conclude that the mechanism of action of phospho-telokin is not through modulation of the MYPT1 phosphorylation status but rather it contributes to cyclic nucleotide-induced relaxation of SM by interacting with and activating the inhibited full-length phospho-MYPT1/PP1 through facilitating its binding to phosphomyosin and thus accelerating 20-kDa myosin regulatory light chain dephosphorylation.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Trato Gastrointestinal/metabolismo , Relaxamento Muscular/fisiologia , Músculo Liso/metabolismo , Mutação de Sentido Incorreto/fisiologia , Quinase de Cadeia Leve de Miosina/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , AMP Cíclico/genética , GMP Cíclico/genética , Camundongos , Camundongos Knockout , Músculo Liso/citologia , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Fosfatase de Miosina-de-Cadeia-Leve , Fragmentos de Peptídeos/genética , Fosforilação/fisiologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
9.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 266-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23385462

RESUMO

Members of the RSK family of kinases constitute attractive targets for drug design, but a lack of structural information regarding the mechanism of selective inhibitors impedes progress in this field. The crystal structure of the N-terminal kinase domain (residues 45-346) of mouse RSK2, or RSK2(NTKD), has recently been described in complex with one of only two known selective inhibitors, a rare naturally occurring flavonol glycoside, kaempferol 3-O-(3'',4''-di-O-acetyl-α-L-rhamnopyranoside), known as SL0101. Based on this structure, it was hypothesized that quercitrin (quercetin 3-O-α-L-rhamnopyranoside), a related but ubiquitous and inexpensive compound, might also act as an RSK inhibitor. Here, it is demonstrated that quercitrin binds to RSK2(NTKD) with a dissociation constant (K(d)) of 5.8 µM as determined by isothermal titration calorimetry, and a crystal structure of the binary complex at 1.8 Å resolution is reported. The crystal structure reveals a very similar mode of binding to that recently reported for SL0101. Closer inspection shows a number of small but significant differences that explain the slightly higher K(d) for quercitrin compared with SL0101. It is also shown that quercitrin can effectively substitute for SL0101 in a biological assay, in which it significantly suppresses the contractile force in rabbit pulmonary artery smooth muscle in response to Ca(2+).


Assuntos
Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quercetina/análogos & derivados , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Animais , Cristalografia por Raios X , Camundongos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Quercetina/metabolismo , Quercetina/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Termodinâmica
10.
Biol Chem ; 394(11): 1399-410, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23950574

RESUMO

In a variety of normal and pathological cell types, Rho-kinases I and II (ROCKI/II) play a pivotal role in the organization of the nonmuscle and smooth muscle cytoskeleton and adhesion plaques as well as in the regulation of transcription factors. Thus, ROCKI/II activity regulates cellular contraction, motility, morphology, polarity, cell division, and gene expression. Emerging evidence suggests that dysregulation of the Rho-ROCK pathways at different stages is linked to cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. This review focuses on the current status of understanding the multiple functions of Rho-ROCK signaling pathways and various modes of regulation of Rho-ROCK activity, thereby orchestrating a concerted functional response.


Assuntos
Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Estabilidade Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Proteína rhoB de Ligação ao GTP/fisiologia , Proteína de Ligação a GTP rhoC
11.
Circ Res ; 109(9): 993-1002, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21885830

RESUMO

RATIONALE: In normal and diseased vascular smooth muscle (SM), the RhoA pathway, which is activated by multiple agonists through G protein-coupled receptors (GPCRs), plays a central role in regulating basal tone and peripheral resistance. This occurs through inhibition of myosin light chain phosphatase, leading to increased phosphorylation of the myosin regulatory light chain. Although it is thought that specific agonists and GPCRs may couple to distinct RhoA guanine nucleotide exchange factors (GEFs), thus raising the possibility of selective targeting of specific GEFs for therapeutic use, this notion is largely unexplored for SM contraction. OBJECTIVE: We examine whether p63RhoGEF, known to couple specifically to Gα(q/11) in vitro, is functional in blood vessels as a mediator of RhoA activation and if it is selectively activated by Gα(q/11) coupled agonists. METHODS AND RESULTS: We find that p63RhoGEF is present across SM tissues and demonstrate that silencing of the endogenous p63RhoGEF in mouse portal vein inhibits contractile force induced by endothelin-1 to a greater extent than the predominantly Gα(12/13)-mediated thromboxane analog U46619. This is because endothelin-1 acts on Gα(q/11) as well as Gα(12/13). Introduction of the exogenous isolated pleckstrin-homology (PH) domain of p63RhoGEF (residues 331-580) into permeabilized rabbit portal vein inhibited Ca2+ sensitized force and activation of RhoA, when phenylephrine was used as an agonist. This reinforces the results based on endothelin-1, because phenylephrine is thought to act exclusively through Gα(q/11). CONCLUSION: We demonstrate that p63RhoGEF selectively couples Gα(q/11) but not Gα(12/13), to RhoA activation in blood vessels and cultured cells and thus mediates the physiologically important Ca2+ sensitization of force induced with Gα(q/11)-coupled agonists. Our results suggest that signaling through p63RhoGEF provides a novel mechanism for selective regulation of blood pressure.


Assuntos
Cálcio/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Contração Muscular/fisiologia , Músculo Liso Vascular/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Endotelina-1/farmacologia , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Fenilefrina/farmacologia , Veia Porta/fisiologia , Coelhos , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho , Vasoconstritores/farmacologia , Proteína rhoA de Ligação ao GTP/fisiologia
12.
J Biol Chem ; 286(40): 35163-75, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21816819

RESUMO

PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via Gα(12/13) and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory "activation box" and the "GEF switch," which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Humanos , Luz , Modelos Estatísticos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Fatores de Troca de Nucleotídeo Guanina Rho , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Raios Ultravioleta , Raios X , Proteína rhoA de Ligação ao GTP/química
13.
J Biol Chem ; 286(19): 16681-92, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454546

RESUMO

Agonist activation of the small GTPase, RhoA, and its effector Rho kinase leads to down-regulation of smooth muscle (SM) myosin light chain phosphatase activity, an increase in myosin light chain (RLC(20)) phosphorylation and force. Cyclic nucleotides can reverse this process. We report a new mechanism of cAMP-mediated relaxation through Epac, a GTP exchange factor for the small GTPase Rap1 resulting in an increase in Rap1 activity and suppression of RhoA activity. An Epac-selective cAMP analog, 8-pCPT-2'-O-Me-cAMP ("007"), significantly reduced agonist-induced contractile force, RLC(20), and myosin light chain phosphatase phosphorylation in both intact and permeabilized vascular, gut, and airway SMs independently of PKA and PKG. The vasodilator PGI(2) analog, cicaprost, increased Rap1 activity and decreased RhoA activity in intact SMs. Forskolin, phosphodiesterase inhibitor isobutylmethylxanthine, and isoproterenol also significantly increased Rap1-GTP in rat aortic SM cells. The PKA inhibitor H89 was without effect on the 007-induced increase in Rap1-GTP. Lysophosphatidic acid-induced RhoA activity was reduced by treatment with 007 in WT but not Rap1B null fibroblasts, consistent with Epac signaling through Rap1B to down-regulate RhoA activity. Isoproterenol-induced increase in Rap1 activity was inhibited by silencing Epac1 in rat aortic SM cells. Evidence is presented that cooperative cAMP activation of PKA and Epac contribute to relaxation of SM. Our findings demonstrate a cAMP-mediated signaling mechanism whereby activation of Epac results in a PKA-independent, Rap1-dependent Ca(2+) desensitization of force in SM through down-regulation of RhoA activity. Cyclic AMP inhibition of RhoA is mediated through activation of both Epac and PKA.


Assuntos
Regulação para Baixo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Aorta/citologia , Brônquios/metabolismo , Cálcio/química , Fibroblastos/citologia , Humanos , Isoproterenol/farmacologia , Lisofosfolipídeos/química , Camundongos , Músculo Liso/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/química , Fosforilação , Ratos
14.
J Biol Chem ; 285(27): 21175-84, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20439457

RESUMO

Krüppel-like factor 4 (Klf4) is a transcription factor involved in differentiation and proliferation in multiple tissues. We demonstrated previously that tamoxifen-induced deletion of the Klf4 gene in mice accelerated neointimal formation but delayed down-regulation of smooth muscle cell differentiation markers in carotid arteries following injury. To further determine the role of Klf4 in the cardiovascular system, we herein derived mice deficient for the Klf4 gene in smooth and cardiac muscle using the SM22alpha promoter (SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice). SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice were born at the expected Mendelian ratio, but they gradually died after birth. Although approximately 40% of SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice survived beyond postnatal day 28, they exhibited marked growth retardation. In wild-type mice, Klf4 was expressed in the heart from late embryonic development through adulthood, whereas it was not expressed in smooth muscle. No changes were observed in morphology or expression of smooth muscle cell differentiation markers in vessels of SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice. Of interest, cardiac output was significantly decreased in SM22alpha-CreKI(+)/Klf4(loxP/loxP) mice, as determined by magnetic resonance imaging. Moreover, a lack of Klf4 in the heart resulted in the reduction in expression of multiple cardiac genes, including Gata4. In vivo chromatin immunoprecipitation assays on the heart revealed that Klf4 bound to the promoter region of the Gata4 gene. Results provide novel evidence that Klf4 plays a key role in late fetal and/or postnatal cardiac development.


Assuntos
Retardo do Crescimento Fetal/genética , Deleção de Genes , Fatores de Transcrição Kruppel-Like/fisiologia , Músculo Liso/patologia , Miocárdio/patologia , Animais , Western Blotting , Cromatina/genética , Cruzamentos Genéticos , Primers do DNA , Morte , Deficiências do Desenvolvimento/genética , Eutanásia , Feminino , Coração/embriologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Músculo Liso/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Am J Physiol Heart Circ Physiol ; 300(5): H1707-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357509

RESUMO

Myocardin is a serum response factor (SRF) coactivator exclusively expressed in cardiomyocytes and smooth muscle cells (SMCs). However, there is highly controversial evidence as to whether myocardin is essential for normal differentiation of these cell types, and there are no data showing whether cardiac or SMC subtypes exhibit differential myocardin requirements during development. Results of the present studies showed the virtual absence of myocardin(-/-) visceral SMCs or ventricular myocytes in chimeric myocardin knockout (KO) mice generated by injection of myocardin(-/-) embryonic stem cells (ESCs) into wild-type (WT; i.e., myocardin(+/+) ESC) blastocysts. In contrast, myocardin(-/-) ESCs readily formed vascular SMC, albeit at a reduced frequency compared with WT ESCs. In addition, myocardin(-/-) ESCs competed equally with WT ESCs in forming atrial myocytes. The ultrastructural features of myocardin(-/-) vascular SMCs and cardiomyocytes were unchanged from their WT counterparts as determined using a unique X-ray microprobe transmission electron microscopic method developed by our laboratory. Myocardin(-/-) ESC-derived SMCs also showed normal contractile properties in an in vitro embryoid body SMC differentiation model, other than impaired thromboxane A2 responsiveness. Together, these results provide novel evidence that myocardin is essential for development of visceral SMCs and ventricular myocytes but is dispensable for development of atrial myocytes and vascular SMCs in the setting of chimeric KO mice. In addition, results suggest that as yet undefined defects in development and/or maturation of ventricular cardiomyocytes may have contributed to early embryonic lethality observed in conventional myocardin KO mice and that observed deficiencies in development of vascular SMC may have been secondary to these defects.


Assuntos
Diferenciação Celular/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Diferenciação Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/citologia , Camundongos , Camundongos Knockout , Modelos Animais , Proteínas Nucleares/genética , Transativadores/genética , Bexiga Urinária/citologia , Vísceras/citologia
17.
BMC Struct Biol ; 9: 36, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19460155

RESUMO

BACKGROUND: The Dbl-family of guanine nucleotide exchange factors (GEFs) activate the cytosolic GTPases of the Rho family by enhancing the rate of exchange of GTP for GDP on the cognate GTPase. This catalytic activity resides in the DH (Dbl-homology) domain, but typically GEFs are multidomain proteins containing other modules. It is believed that GEFs are autoinhibited in the cytosol due to supramodular architecture, and become activated in diverse signaling pathways through conformational change and exposure of the DH domain, as the protein is translocated to the membrane. A small family of RhoA-specific GEFs, containing the RGSL (regulators of G-protein signaling-like) domain, act as effectors of select GPCRs via Galpha12/13, although the molecular mechanism by which this pathway operates is not known. These GEFs include p115, LARG and PDZRhoGEF (PRG). RESULTS: Here we show that the autoinhibition of PRG is caused largely by an interaction of a short negatively charged sequence motif, immediately upstream of the DH-domain and including residues Asp706, Glu708, Glu710 and Asp712, with a patch on the catalytic surface of the DH-domain including Arg867 and Arg868. In the absence of both PDZ and RGSL domains, the DH-PH tandem with additional 21 residues upstream, is 50% autoinhibited. However, within the full-length protein, the PDZ and/or RGSL domains significantly restore autoinhibition. CONCLUSION: Our results suggest a mechanism for autoinhibition of RGSL family of GEFs, in which the RGSL domain and a unique sequence motif upstream of the DH domain, act cooperatively to reduce the ability of the DH domain to bind the nucleotide free RhoA. The activation mechanism is likely to involve two independent steps, i.e. displacement of the RGSL domain and conformational change involving the autoinhibitory sequence motif containing several negatively charged residues.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/química , Modelos Químicos , Animais , Domínio Catalítico , Humanos , Camundongos , Mutação , Células NIH 3T3 , Domínios PDZ , Fatores de Troca de Nucleotídeo Guanina Rho
18.
Histochem Cell Biol ; 132(2): 191-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19437030

RESUMO

Ca(2+) sensitivity of smooth muscle (SM) contraction is determined by CPI-17, an inhibitor protein for myosin light chain phosphatase (MLCP). CPI-17 is highly expressed in mature SM cells, but the expression level varies under pathological conditions. Here, we determined the expression of CPI-17 in embryonic SM tissues and arterial neointimal lesions using immunohistochemistry. As seen in adult animals, the predominant expression of CPI-17 was detected at SM tissues on mouse embryonic sections, whereas MLCP was ubiquitously expressed. Compared with SM alpha-actin, CPI-17 expression doubled in arterial SM from embryonic day E10 to E14. Like SM alpha-actin and other SM marker proteins, CPI-17 was expressed in embryonic heart, and the expression was down-regulated at E17. In adult rat, CPI-17 expression level was reduced to 30% in the neointima of injured rat aorta, compared with the SM layers, whereas the expression of MLCP was unchanged in both regions. Unlike other SM proteins, CPI-17 was detected at non-SM organs in the mouse embryo, such as embryonic neurons and epithelium. Thus, CPI-17 expression is reversibly controlled in response to the phenotype transition of SM cells that restricts the signal to differentiated SM cells and particular cell types.


Assuntos
Aorta/enzimologia , Desenvolvimento Embrionário , Proteínas Musculares/biossíntese , Músculo Liso/enzimologia , Fosfoproteínas/biossíntese , Túnica Íntima/enzimologia , Animais , Aorta/lesões , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas Musculares/análise , Músculo Liso/embriologia , Miocárdio/enzimologia , Fosfoproteínas/análise , Ratos , Ratos Sprague-Dawley , Túnica Íntima/lesões
19.
J Muscle Res Cell Motil ; 30(1-2): 41-55, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19205907

RESUMO

Lipoma preferred partner (LPP) localizes to focal adhesions/dense bodies, is selectively expressed in smooth muscle cells (SMC) and enhances cell migration. SMCs cultured on denatured collagen or on a rigid substrate, up regulated expression of LPP, its partner palladin, tenascin C (TN-C), phosphorylated focal adhesion kinase (pFAK) and exhibited robust stress fibers. In an endothelial (EC)/SMC hemodynamic flow system, shear stress waveforms mimicking atheroprone flow, applied to the EC layer, significantly decreased expression of SMC LPP and palladin. They were also down regulated with TN-C, in an ApoE murine model of atherosclerosis and with oxidative stress but up regulated in an arterial injury model in response to upstream sequential changes in pFAK, Prx1 and TN-C. In conclusion, expression of LPP and palladin are modulated by a mix of mechanical cues, oxidative stress and substrate composition which translate into their up or down regulation in vessel wall injury and early atherogenesis.


Assuntos
Aterosclerose/metabolismo , Proteínas do Citoesqueleto/biossíntese , Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Fosfoproteínas/biossíntese , Resistência ao Cisalhamento , Animais , Aorta/lesões , Aorta/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Adesão Celular , Movimento Celular , Colágeno/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Proteínas com Domínio LIM , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Fibras de Estresse/metabolismo , Tenascina/metabolismo
20.
Circ Res ; 100(6): 817-25, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17322171

RESUMO

Lipoma preferred partner (LPP) is a proline rich LIM domain family protein highly expressed at plasma membrane dense bodies and focal adhesions in smooth muscle cells.(1) Using the C-terminus of LPP as bait in a yeast two hybrid system, palladin, an actin-associated protein was identified. The palladin interacting region of LPP was mapped to the first and second LIM domains. The N-terminus of palladin interacted with LPP both in vitro and in vivo, but not solely through its FPLPPP and FPPPP motifs. Like LPP, palladin, is highly expressed in differentiated smooth muscle, colocalized at focal adhesions, at isolated lamellipodia and at dense bodies in smooth muscle tissue. Both LPP and palladin enhanced cell migration and spreading. LPP and palladin expression was markedly decreased, in contrast to vinculin or paxillin, in migration defective focal adhesion kinase null cells, but was restored by expression of the paired-related homeobox gene-1 protein. We have previously shown in focal adhesion kinase null cells, that tetracycline induced expression of focal adhesion kinase upregulated expression of LPP(2) and now show upregulation of palladin, and paired-related homeobox gene-1 protein. The expression of both LPP and palladin, like smooth muscle alpha-actin, was increased by angiotensin II, regulated by actin dynamics, upregulated by myocardin and expressed in the neointima of injured aorta. Overall, the data suggest that the function of LPP and palladin is context dependent, that they play a critical role in cytoskeletal remodeling, respond to signals induced by vascular injury as well as signals that induce smooth muscle cell hypertrophy, such as angiotension II.


Assuntos
Angiotensina II/farmacologia , Proteínas do Citoesqueleto/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Proteínas de Homeodomínio/fisiologia , Músculo Liso Vascular/metabolismo , Fosfoproteínas/metabolismo , Actinas/metabolismo , Animais , Aorta/lesões , Aorta/metabolismo , Western Blotting , Linhagem Celular , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Adesões Focais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Humanos , Proteínas com Domínio LIM , Camundongos , Especificidade de Órgãos , Fosfoproteínas/genética , Estrutura Terciária de Proteína/fisiologia , Pseudópodes/metabolismo , Ratos , Ratos Sprague-Dawley , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA