Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Nature ; 618(7966): 733-739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344647

RESUMO

Control of adhesion is a striking feature of living matter that is of particular interest regarding technological translation1-3. We discovered that entropic repulsion caused by interfacial orientational fluctuations of cholesterol layers restricts protein adsorption and bacterial adhesion. Moreover, we found that intrinsically adhesive wax ester layers become similarly antibioadhesive when containing small quantities (under 10 wt%) of cholesterol. Wetting, adsorption and adhesion experiments, as well as atomistic simulations, showed that repulsive characteristics depend on the specific molecular structure of cholesterol that encodes a finely balanced fluctuating reorientation at the interface of unconstrained supramolecular assemblies: layers of cholesterol analogues differing only in minute molecular variations showed markedly different interfacial mobility and no antiadhesive effects. Also, orientationally fixed cholesterol layers did not resist bioadhesion. Our insights provide a conceptually new physicochemical perspective on biointerfaces and may guide future material design in regulation of adhesion.


Assuntos
Aderência Bacteriana , Colesterol , Entropia , Proteínas , Adsorção , Proteínas/química , Molhabilidade , Colesterol/química
2.
Phys Rev Lett ; 132(5): 057102, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364150

RESUMO

The force autocorrelation function (FACF), a concept of fundamental interest in statistical mechanics, encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the FACF is believed to decay monotonically in time, which is a signature of slowing down of the dynamics of the tagged particle due to interactions. Here, we analytically show that in odd-diffusive systems, which are characterized by a diffusion tensor with antisymmetric elements, the FACF can become negative and even exhibit temporal oscillations. We also demonstrate that, despite the isotropy, the knowledge of FACF alone is not sufficient to describe the dynamics: the full autocorrelation tensor is required and contains an antisymmetric part. These unusual properties translate into enhanced dynamics of the tagged particle quantified via the self-diffusion coefficient that, remarkably, increases due to particle interactions.

3.
Phys Rev Lett ; 133(2): 028402, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073969

RESUMO

A fundamental question about biomolecular condensates is how distinct condensates can emerge from the interplay of different components. Here we present a minimal model of droplet differentiation where phase separated droplets demix into two types with different chemical modifications triggered by enzymatic reactions. We use numerical solutions to Cahn-Hilliard equations with chemical reactions and an effective droplet model to reveal the switchlike behavior. Our work shows how condensate identities in cells could result from competing enzymatic actions.

4.
Langmuir ; 40(5): 2487-2499, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38180486

RESUMO

The solvophobicity-driven directional self-assembly of polymer-coated gold nanorods is a well-established phenomenon. Yet, the kinetics of this process, the origin of site-selectivity in the self-assembly, and the interplay of (attractive) solvophobic brush interactions and (repulsive) electrostatic forces are not fully understood. Herein, we use a combination of time-resolved (vis/NIR) extinction spectroscopy and finite-difference time-domain (FDTD) simulations to determine conversion profiles for the assembly of gold nanorods with polystyrene shells of distinct thicknesses into their (tip-to-tip) self-assembled structures. In particular, we demonstrate that the assembly process is highly protracted compared with diffusion-controlled rates, and we find that the assembly rate varies for different thickness values of the polymer shell. Our findings were rationalized using coarse-grained molecular dynamics simulations, which also corroborated the tip-to-tip preference in the self-assembly process, albeit with a uniform polymer coating. Utilizing the knowledge of quantified conversion rates for distinct colloidal species, we designed coassembling systems with different brush thicknesses, featuring "narcissistic" self-sorting behavior. This provides new perspectives for high-level supracolloidal self-assembly.

5.
Hum Brain Mapp ; 44(17): 6227-6244, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818950

RESUMO

When we perform an action, its sensory outcomes usually follow shortly after. This characteristic temporal relationship aids in distinguishing self- from externally generated sensory input. To preserve this ability under dynamically changing environmental conditions, our expectation of the timing between action and outcome must be able to recalibrate, for example, when the outcome is consistently delayed. Until now, it remains unclear whether this process, known as sensorimotor temporal recalibration, can be specifically attributed to recalibration of sensorimotor (action-outcome) predictions, or whether it may be partly due to the recalibration of expectations about the intersensory (e.g., audio-tactile) timing. Therefore, we investigated the behavioral and neural correlates of temporal recalibration and differences in sensorimotor and intersensory contexts. During fMRI, subjects were exposed to delayed or undelayed tones elicited by actively or passively generated button presses. While recalibration of the expected intersensory timing (i.e., between the tactile sensation during the button movement and the tones) can be expected to occur during both active and passive movements, recalibration of sensorimotor predictions should be limited to active movement conditions. Effects of this procedure on auditory temporal perception and the modality-transfer to visual perception were tested in a delay detection task. Across both contexts, we found recalibration to be associated with activations in hippocampus and cerebellum. Context-dependent differences emerged in terms of stronger behavioral recalibration effects in sensorimotor conditions and were captured by differential activation pattern in frontal cortices, cerebellum, and sensory processing regions. These findings highlight the role of the hippocampus in encoding and retrieving newly acquired temporal stimulus associations during temporal recalibration. Furthermore, recalibration-related activations in the cerebellum may reflect the retention of multiple representations of temporal stimulus associations across both contexts. Finally, we showed that sensorimotor predictions modulate recalibration-related processes in frontal, cerebellar, and sensory regions, which potentially account for the perceptual advantage of sensorimotor versus intersensory temporal recalibration.


Assuntos
Desempenho Psicomotor , Percepção do Tempo , Humanos , Desempenho Psicomotor/fisiologia , Retroalimentação , Percepção Visual/fisiologia , Percepção do Tempo/fisiologia , Percepção Auditiva , Tato
6.
Langmuir ; 39(14): 4872-4880, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36995334

RESUMO

Polymer brushes, i.e., end-tethered polymer chains on substrates, are sensitive to adaptation, e.g., swelling, adsorption, and reorientation of the surface molecules. This adaptation can originate from a contacting liquid or atmosphere for partially wetted substrates. The macroscopic contact angle of the aqueous drop can depend on both adaptation mechanisms. We analyze how the atmosphere around an aqueous droplet determines the resulting contact angle of the wetting droplet on polymer brush surfaces. Poly(N-isopropylacrylamide) (PNiPAAm)-based brushes are used due to their exceptional sensitivity to solvation and liquid mixture composition. We develop a method that reliably measures wetting properties when the drop and the surrounding atmosphere are not in equilibrium, e.g., when evaporation and condensation tend to contaminate the liquid of the drop and the atmosphere. For this purpose, we use a coaxial needle in the droplet, which continuously exchanges the wetting liquid, and in addition, we constantly exchange the almost saturated atmosphere. Depending on the wetting history, PNiPAAm can be prepared in two states, state A with a large water contact angle (∼65°) and state B with a small water contact angle (∼25°). With the coaxial needle, we can demonstrate that the water contact angle of a sample in state B significantly increases by ∼30° when a water-free atmosphere is almost saturated with ethanol, compared to an ethanol-free atmosphere at 50% relative humidity. For a sample in state A, the relative humidity has little influence on the water contact angle.

7.
J Chem Phys ; 158(12): 124904, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003732

RESUMO

The Bond Fluctuation Model (BFM) is a highly efficient and versatile method for simulating polymers, membranes, and soft matter. Due to its coarse-grained nature, the BFM is employed to understand the universal properties of polymers. Solvent effects are often mediated by explicit solvent particles, while implicit solvent models have had limited use as they may lead to frozen states and, thus, ergodicity-related problems. In simulation setups, such as coagulated multiple homopolymers chains, explicit solvent models are computationally expensive because the region of interest can be localized in a small space compared to the dimension of the periodic box. We introduce an implicit solvent model based on an artificial neural network (NN) that was trained with BFM simulation data for single homopolymers in an explicit solvent. We demonstrate that NN-based simulations that take into account only the information of the local environment of monomers reproduce the expected universal macroscopic properties of the polymer under varying solvent conditions. The homopolymer chains simulated using the NN reproduce the coil-globule transition, the static and dynamic bond autocorrelation, and the mean square displacement of chain monomers. We show that the learned parameters from a single chain system can be transferred to a system containing multiple homopolymers, indicating that the learned parameters are transferable to considerably different systems.

8.
Phys Rev Lett ; 129(9): 090601, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083684

RESUMO

It is generally believed that collisions of particles reduce the self-diffusion coefficient. Here we show that in odd-diffusive systems, which are characterized by diffusion tensors with antisymmetric elements, collisions surprisingly can enhance the self-diffusion. In these systems, due to an inherent curving effect, the motion of particles is facilitated, instead of hindered by collisions leading to a mutual rolling effect. Using a geometric model, we analytically predict the enhancement of the self-diffusion coefficient with increasing density. This counterintuitive behavior is demonstrated in the archetypal odd-diffusive system of Brownian particles under Lorentz force. We validate our findings by many-body Brownian dynamics simulations in dilute systems.

9.
Soft Matter ; 18(30): 5598-5604, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857069

RESUMO

In molecular dynamics simulations we investigate the self-organized formation of droplets from a continuous flow of incoming nanoparticles. This transformation is facilitated by a cylindrical channel that is decorated with a polymer brush in a marginally poor solvent. We analyze droplet formation and propagation by means of simple scaling arguments which are tested in the simulations. Polymer brushes in marginally poor solvents serve as a pressure feedback system, exhibit a collapse transition under the moderate pressure of the incident flow, without the need for additional external stimuli, and finally close spontaneously after droplet passage. Our results qualitatively demonstrate the control of polymer brushes over continuous fluids and droplet formation, and its effectiveness as a means of fluid control can be used to design nanofluidic rectification devices that operate reliably under moderate pressure.

10.
J Chem Phys ; 157(13): 134902, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209024

RESUMO

While the behavior of active colloidal molecules is well studied now for constant activity, the effect of activity gradients is much less understood. Here, we explore one of the simplest molecules in activity gradients, namely active chiral dimers composed of two particles with opposite active torques of the same magnitude. We show analytically that with increasing torque, the dimer switches its behavior from antichemotactic to chemotactic. The origin of the emergent chemotaxis is the cooperative exploration of an activity gradient by the two particles. While one of the particles moves into higher activity regions, the other moves towards lower activity regions, resulting in a net bias in the direction of higher activity. We do a comparative study of chiral active particles with charged Brownian particles under a magnetic field and show that despite the fundamental similarity in terms of their odd-diffusive behavior, their dynamics and chemotactic behavior are generally not equivalent. We demonstrate this explicitly in a dimer composed of oppositely charged active particles, which remains antichemotactic to any magnetic field.


Assuntos
Quimiotaxia , Difusão , Torque
11.
J Chem Phys ; 157(10): 104902, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36109228

RESUMO

We consider polymer brushes in poor solvent that are grafted onto planar substrates and onto the internal and external surfaces of a cylinder using molecular dynamics simulation, self-consistent field (SCF), and mean-field theory. We derive a unified expression for the mean field free energy for the three geometrical classes. While for low grafting densities, the effect of chain elasticity can be neglected in poor solvent conditions, it becomes relevant at higher grafting densities and, in particular, for concave geometries. Based on the analysis of the end monomer distribution, we introduce an analytical term that describes the elasticity as a function of grafting density. The accuracy of the model is validated with molecular dynamics simulations as well as SCF computations and shown to yield precise values for the layer thickness over a wide range of system parameters. We further apply this model to analyze the gating behavior of switchable brushes inside nanochannels.

12.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613551

RESUMO

Cognitive impairments related to changes in deep gray matter and other brain regions occur in up to 70% of people with multiple sclerosis. But do such brain changes also occur in patients without significant cognitive impairment? Eighteen participants with relapsing-remitting multiple sclerosis (RRMS) and fifteen healthy controls participated in this study. Cognitive status, depression, and fatigue were assessed using the Multiple Sclerosis Inventory of Cognition (MUSIC), Beck's Depression Inventory (BDI-II), and the Fatigue Severity Scale (FSS). fMRI was recorded while a participant performed the modified attention network test (ANT). The effects of ANT executive attention network on hemodynamic activation of a priori defined regions of interest, including the hippocampus, anterior cingulate cortex (ACC), thalamus, caudate nucleus, pallidum, and putamen were studied. The individual lesion load was estimated. For fMRI data analysis a general linear model with randomization statistics including threshold-free cluster enhancement as implemented in the FSL software was used. Participants with RRMS showed reduced activation of the executive attention network in the hippocampus, pallidum, and ACC. The thalamus was involved in both group activations but did not differ between groups. In summary, functional changes in the brain can also be demonstrated in RRMS patients without cognitive deficits. The affected brain regions can best be assigned to the attention network for executive control. This association could likely serve as a biological indicator of susceptibility to imminent cognitive impairment in MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Encéfalo/patologia , Cognição/fisiologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Imageamento por Ressonância Magnética , Fadiga
13.
Neuroimage ; 236: 118000, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864902

RESUMO

Somatosensory signals on a moving limb are typically suppressed. This results mainly from a predictive mechanism that generates an efference copy, and attenuates the predicted sensory consequences of that movement. Sensory feedback is, however, important for movement control. Behavioral studies show that the strength of suppression on a moving limb increases during somatosensory reaching, when reach-relevant somatosensory signals from the target limb can be additionally used to plan and guide the movement, leading to increased reliability of sensorimotor predictions. It is still unknown how this suppression is neurally implemented. In this fMRI study, participants reached to a somatosensory (static finger) or an external target (touch-screen) without vision. To probe suppression, participants detected brief vibrotactile stimuli on their moving finger shortly before reach onset. As expected, sensitivity to probes was reduced during reaching compared to baseline (resting), and this suppression was stronger during somatosensory than external reaching. BOLD activation associated with suppression was also modulated by the reach target: relative to baseline, processing of probes during somatosensory reaching led to distinct BOLD deactivations in somatosensory regions (postcentral gyrus, supramarginal gyrus-SMG) whereas probes during external reaching led to deactivations in the cerebellum. In line with the behavioral results, we also found additional deactivations during somatosensory relative to external reaching in the supplementary motor area, a region linked with sensorimotor prediction. Somatosensory reaching was also linked with increased functional connectivity between the left SMG and the right parietal operculum along with the right anterior insula. We show that somatosensory processing on a moving limb is reduced when additional reach-relevant feedback signals from the target limb contribute to the movement, by down-regulating activation in regions associated with predictive and feedback processing.


Assuntos
Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Dedos/fisiologia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Percepção do Tato/fisiologia , Adulto , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Adulto Jovem
14.
Neuroimage ; 238: 118223, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34098065

RESUMO

Studies on social cognition often use complex visual stimuli to asses neural processes attributed to abilities like "mentalizing" or "Theory of Mind" (ToM). During the processing of these stimuli, eye gaze, however, shapes neural signal patterns. Individual differences in neural operations on social cognition may therefore be obscured if individuals' gaze behavior differs systematically. These obstacles can be overcome by the combined analysis of neural signal and natural viewing behavior. Here, we combined functional magnetic resonance imaging (fMRI) with eye-tracking to examine effects of unconstrained gaze on neural ToM processes in healthy individuals with differing levels of emotional awareness, i.e. alexithymia. First, as previously described for emotional tasks, people with higher alexithymia levels look less at eyes in both ToM and task-free viewing contexts. Further, we find that neural ToM processes are not affected by individual differences in alexithymia per se. Instead, depending on alexithymia levels, gaze on critical stimulus aspects reversely shapes the signal in medial prefrontal cortex (MPFC) and anterior temporoparietal junction (TPJ) as distinct nodes of the ToM system. These results emphasize that natural selective attention affects fMRI patterns well beyond the visual system. Our study implies that, whenever using a task with multiple degrees of freedom in scan paths, ignoring the latter might obscure important conclusions.


Assuntos
Emoções , Fixação Ocular/fisiologia , Mentalização/fisiologia , Cognição Social , Teoria da Mente/fisiologia , Adulto , Sintomas Afetivos , Atenção/fisiologia , Mapeamento Encefálico , Tecnologia de Rastreamento Ocular , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Lobo Temporal/fisiopatologia , Adulto Jovem
15.
Phys Rev Lett ; 126(20): 208102, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110188

RESUMO

Active particles with their characteristic feature of self-propulsion are regarded as the simplest models for motility in living systems. The accumulation of active particles in low activity regions has led to the general belief that chemotaxis requires additional features and at least a minimal ability to process information and to control motion. We show that self-propelled particles display chemotaxis and move into regions of higher activity if the particles perform work on passive objects, or cargo, to which they are bound. The origin of this cooperative chemotaxis is the exploration of the activity gradient by the active particle when bound to a load, resulting in an average excess force on the load in the direction of higher activity. Using a new theoretical model, we capture the most relevant features of these active-passive dimers, and in particular we predict the crossover between antichemotactic and chemotactic behavior. Moreover, we show that merely connecting active particles to chains is sufficient to obtain the crossover from antichemotaxis to chemotaxis with increasing chain length. Such an active complex is capable of moving up a gradient of activity such as provided by a gradient of fuel and to accumulate where the fuel concentration is at its maximum. The observed transition is of significance to protoforms of life, enabling them to locate a source of nutrients even in the absence of any supporting sensomotoric apparatus.


Assuntos
Quimiotaxia , Modelos Químicos
16.
Angew Chem Int Ed Engl ; 60(30): 16600-16606, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33979032

RESUMO

Polymer brush surfaces that alter their physical properties in response to chemical stimuli have the capacity to be used as new surface-based sensing materials. For such surfaces, detecting the polymer conformation is key to their sensing capabilities. Herein, we report on FRET-integrated ultrathin (<70 nm) polymer brush surfaces that exhibit stimuli-dependent FRET with changing brush conformation. Poly(N-isopropylacrylamide) polymers were chosen due their exceptional sensitivity to liquid mixture compositions and their ability to be assembled into well-defined polymer brushes. The brush transitions were used to optically sense changes in liquid mixture compositions with high spatial resolution (tens of micrometers), where the FRET coupling allowed for noninvasive observation of brush transitions around complex interfaces with real-time sensing of the liquid environment. Our methods have the potential to be leveraged towards greater surface-based sensing capabilities at intricate interfaces.

17.
Neuroimage ; 194: 182-190, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30914383

RESUMO

INTRODUCTION: Empathic behavior and related neural processing are strongly modified by group membership. Shared neural circuits for the production and perception of facial emotional expressions represent mirror neuron mechanisms which play a pivotal role for empathy. In this study, we investigate the influence of group membership on mirror neuron mechanisms for emotional facial expressions. METHODS: In a functional magnetic resonance imaging task, 178 healthy subjects perceived emotional and neutral facial expressions of artificial ingroup and outgroup members, displayed as 5 s video clips, and produced these facial expressions themselves. Before scanning, artificial group membership was manipulated ad-hoc through a minimal group paradigm. RESULTS: Shared neural activity for emotional facial expression production and perception was revealed in a large network with right-hemispheric preponderance encompassing motor mirror neuron regions, i.e., inferior frontal gyrus, supplementary motor area and middle temporal gyrus, in addition to limbic regions, i.e., amygdala, hippocampus, para-hippocampus, and insula. Within this network there was greater neural activation for ingroup compared to outgroup members in temporal poles, amygdalae, the left insula, the left inferior frontal gyrus, and the inferior and middle temporal gyrus, the right hippocampus and parahippocampus. DISCUSSION: We validate and extend knowledge on brain regions with mirror neuron properties. Most crucially, we provide evidence for the influence of group membership on regions within the mirror neuron system, indicating more neural resonance (mirroring) for ingroup facial emotional expressions.


Assuntos
Encéfalo/fisiologia , Empatia/fisiologia , Relações Interpessoais , Neurônios-Espelho/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
18.
J Am Chem Soc ; 141(39): 15586-15596, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31438682

RESUMO

Recently developed chain walking (CW) catalysis is an elegant approach to produce materials with controllable structure and properties. However, there is still a lack in understanding of how the reaction mechanism influences the macromolecular structures. In this study, a series of dendritic polyethylenes (PE) synthesized by Pd-α-diimine-complex through CW catalysis (CWPE) is investigated by means of theory and experiment. Thereby, the exceptional ability of in situ tailoring polymer structure by varying synthesis parameters was exploited to tune the branching architecture, which allowed us to establish a precise relationship between synthesis, structure, and solution properties. The systematically produced polymers were characterized by state-of-the-art multidetector separation and neutron scattering experiments as well as atomic force microscopy to access molecular properties of CWPE. On a global scale, the CWPE appear in a worm-like conformation independently on the synthesis conditions. However, severe differences in their contraction factors suggested that CWPE differ substantially in topology. These observations were verified by NMR studies that showed that CWPE possess a constant total number of branches but varying branching distribution. Small angle neutron scattering experiments gave access to structural characteristics from global to segmental scale and revealed the unique heterogeneity of CWPE, which is predominantly based on differences in their dendritic side chains. The experimental data were compared to theoretical CW structures modeled with different reaction-to-walking probabilities. Simple theoretical arguments predict a crossover from dendritic to linear topologies yielding a structural range from purely linear to dendritic chain growth. Yet, comparison of theoretical and empirical scattering curves gave the first evidence that a transition state to worm-like topologies is actually experimentally accessible. This crossover regime is characterized by linear global features and dendritic local substructures contrary to randomly hyperbranched systems. Instead, the obtained CWPE systems have characteristics of disordered dendritic bottle brushes and can be adjusted by the walking rate/reaction probability of the catalyst.

19.
Phys Rev Lett ; 122(8): 087801, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932593

RESUMO

We reconsider the isothermal equation of state (EOS) for linear homopolymers in good solvents, p=p(c,T), which relates the osmotic pressure p of polymers with the bulk concentration c and the temperature T. The classical scaling theory predicts the EOS in dilute and semidilute regimes. We suggest a generalized EOS that extends the universal behavior of polymer solutions up to the highly concentrated state and confirm it by molecular dynamics simulations and available experimental data. Our conjecture implies that properties of polymer chains dominate the EOS in the presence of many-body interactions. Our theoretical approach is based on a viral expansion in terms of concentration blobs leading to a superposition of two power laws in the regime of concentrated solutions.

20.
Soft Matter ; 15(18): 3671-3679, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30950476

RESUMO

We consider tendomers, which are formed by pairs of rotaxane molecules where each one consists of a linear chain with N Kuhn segments that are threaded through m + 1 small rings. These rings can slide freely along the chains but cannot pass through each other or detach from the chain. By crosslinking the first slide rings of the two rotaxanes a slip-link between the two polymer backbones is formed. The remaining m slide rings form a one-dimensional real gas confined between the slip-link and the other chain end. When pulling the two ends of the chains which are next to the slip-link, an applied external force causes a compression of the slide rings. We consider the exact partition function of this model taking into account the repulsion between the slide rings and the finite extensibility of the polymer chains which is compared with Monte-Carlo simulation data for the tendomer under external force. To understand the underlying physics of the tendomer, we discuss also a simplified thermodynamic approach by taking into account the interplay between chain deformation and compression of the gas of slide rings. We show that tendomers exhibit a jump like mechanical response at a critical pulling force ∝ (m/N)1/2, where the compression of the gas of slide rings sets is. While the tendomer deforms at low forces similar to a short chain of about 2(N - m)/(m + 2) segments, it displays a jump-like decrease in elasticity beyond the critical force and deforms then like a chain of about 2(N - m) segments, before the finite extensibility of the chains sets in. This results in a strong peak of the mechanical susceptibility of the tendomer as a function of the applied force. Thus, tendomers are molecular-elastic elements with a jump-like strain-softening behavior. Our results are generalized to asymmetric tendomers that differ in the number of slide rings per rotaxane, which allows to design multi-step force extension curves with defined critical forces. Finally, we discuss some aspects of gels formed by tendomers, which are promising candidates for tailor-made stress sensitive elastomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA