Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269727

RESUMO

Mycobacterium tuberculosis (Mtb) inhibits host oxidative stress responses facilitating its survival in macrophages; however, the underlying molecular mechanisms are poorly understood. Here, we identified a Mtb acetyltransferase (Rv3034c) as a novel counter actor of macrophage oxidative stress responses by inducing peroxisome formation. An inducible Rv3034c deletion mutant of Mtb failed to induce peroxisome biogenesis, expression of the peroxisomal ß-oxidation pathway intermediates (ACOX1, ACAA1, MFP2) in macrophages, resulting in reduced intracellular survival compared to the parental strain. This reduced virulence phenotype was rescued by repletion of Rv3034c. Peroxisome induction depended on the interaction between Rv3034c and the macrophage mannose receptor (MR). Interaction between Rv3034c and MR induced expression of the peroxisomal biogenesis proteins PEX5p, PEX13p, PEX14p, PEX11ß, PEX19p, the peroxisomal membrane lipid transporter ABCD3, and catalase. Expression of PEX14p and ABCD3 was also enhanced in lungs from Mtb aerosol-infected mice. This is the first report that peroxisome-mediated control of ROS balance is essential for innate immune responses to Mtb but can be counteracted by the mycobacterial acetyltransferase Rv3034c. Thus, peroxisomes represent interesting targets for host-directed therapeutics to tuberculosis.


Assuntos
Mycobacterium tuberculosis , Peroxissomos , Acetiltransferases/metabolismo , Animais , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo , Peroxissomos/metabolismo
2.
Cell Microbiol ; 22(9): e13214, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32388919

RESUMO

Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis-1 and DLP-1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down-regulating the expression of pexophagy associated proteins (p-AMPKα, p-ULK-1, Atg5, Atg7, Beclin-1, LC3-II, TFEB and Keap-1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor-γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.


Assuntos
Proteínas de Bactérias/genética , Regulação da Expressão Gênica , Macroautofagia , Macrófagos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mycobacterium tuberculosis/genética , PPAR gama/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citoplasma/microbiologia , Humanos , Macrófagos/microbiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Oxirredução , Estresse Oxidativo , PPAR gama/metabolismo
3.
J Immunol ; 203(10): 2665-2678, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31619537

RESUMO

Despite representing a very important class of virulence proteins, the role of lipoproteins in the pathogenesis of Mycobacterium tuberculosis remains elusive. In this study, we investigated the role of putative lipoprotein LprE in the subversion of host immune responses using the M. tuberculosis CDC1551 LprE (LprE Mtb ) mutant (Mtb∆LprE). We show that deletion of LprE Mtb results in reduction of M. tuberculosis virulence in human and mouse macrophages due to upregulation of vitamin D3-responsive cathelicidin expression through the TLR2-dependent p38-MAPK-CYP27B1-VDR signaling pathway. Conversely, episomal expression of LprE Mtb in Mycobacterium smegmatis improved bacterial survival. Infection in siTLR2-treated or tlr2-/- macrophages reduced the survival of LprE Mtb expressing M. tuberculosis and M. smegmatis because of a surge in the expression of cathelicidin. Infection with the LprE Mtb mutant also led to accumulation of autophagy-related proteins (LC3, Atg-5, and Beclin-1) and augmented recruitment of phagosomal (EEA1 and Rab7) and lysosomal (LAMP1) proteins, thereby resulting in the reduction of the bacterial count in macrophages. The inhibition of phago-lysosome fusion by LprE Mtb was found to be due to downregulation of IL-12 and IL-22 cytokines. Altogether, our data indicate that LprE Mtb is an important virulence factor that plays a crucial role in mycobacterial pathogenesis in the context of innate immunity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Autofagia/imunologia , Proteínas de Bactérias/metabolismo , Macrófagos/imunologia , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/genética , Citocinas/metabolismo , Inativação Gênica , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata , Macrófagos/microbiologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células THP-1 , Receptor 2 Toll-Like/genética , Catelicidinas
4.
J Biol Chem ; 292(17): 6855-6868, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28209712

RESUMO

Mycobacterium tuberculosis is known to modulate the host immune responses to facilitate its persistence inside the host cells. One of the key mechanisms includes repression of class-II transactivator (CIITA) and MHC-II expression in infected macrophages. However, the precise mechanism of CIITA and MHC-II down-regulation is not well studied. M. tuberculosis 6-kDa early secretory antigenic target (ESAT-6) is a known potent virulence and antigenic determinant. The M. tuberculosis genome encodes 23 such ESAT-6 family proteins. We herein report that M. tuberculosis and M. bovis bacillus Calmette-Guérin infection down-regulated the expression of CIITA/MHC-II by inducing hypermethylation in histone H3 lysine 9 (H3K9me2/3). Further, we showed that M. tuberculosis ESAT-6 family protein EsxL, encoded by Rv1198, is responsible for the down-regulation of CIITA/MHC-II by inducing H3K9me2/3. We further report that M. tuberculosis esxL induced the expression of nitric-oxide synthase, NO production, and p38 MAPK pathway, which in turn was responsible for the increased H3K9me2/3 in CIITA via up-regulation of euchromatic histone-lysine N-methyltransferase 2 (G9a). In contrast, inhibition of nitric-oxide synthase, p38 MAPK, and G9a abrogated H3K9me2/3, resulting in increased CIITA expression. A chromatin immunoprecipitation assay confirmed that hypermethylation at the promoter IV region of CIITA is mainly responsible for CIITA down-regulation and subsequent antigen presentation. We found that co-culture of macrophages infected with esxL-expressing M. smegmatis and mouse splenocytes led to down-regulation of IL-2, a key cytokine involved in T-cell proliferation. In summary, we demonstrate that M. tuberculosis EsxL inhibits antigen presentation by enhancing H3K9me2/3 at the CIITA promoter, thereby repressing its expression through NO and p38 MAPK activation.


Assuntos
Proteínas de Bactérias/fisiologia , Metilação de DNA , Macrófagos/metabolismo , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Nucleares/genética , Transativadores/genética , Animais , Apresentação de Antígeno , Antígenos de Bactérias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genoma Bacteriano , Histonas/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais , Baço/citologia , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Cell Biochem ; 119(9): 7328-7338, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761826

RESUMO

Emergence of multi-drug resistance tuberculosis has become a serious health problem globally. Accumulation of mutations in the drug target led to the development of multi-drug resistant mycobacterial strains that have made most of the conventional drugs ineffective. Hence, there is desperate need for the development of new therapeutic strategies. Here, we focused on the analysis of mutations in Mycobacterium tuberculosis (Mtb) PncA (pyrazinamidase) that is responsible for resistance against first-line anti-tuberculosis pyrazinamide (PZA) drug. First, PZA and its two isoforms were analyzed for their binding affinity toward ligand binding cavity of Mtb wild-type and mutant PncA proteins. The observations suggested that some drug resistant mutations cause strong binding of PncA with the active form of PZA and impair its release, which is required to inhibit the growth of Mtb. To improve the treatment of PZA resistant Mtb, high throughput virtual drug screening was performed to identify potent drug molecules from a library of compounds derived from ChEMBL database. From this library, we predicted a lead molecule (terta-butyl(2S,4S)-4-amino-2-cyclopropyl-6-(trifluoromethyl)-3,4-dihydro-2H-quinoline-1-carboxylate) to be more effective against PZA resistant Mtb strains in comparison to PZA. The lead molecule showed better drug-like properties such as high affinity and atomic interactions with wild-type and drug-resistant mutations in Mtb PncA proteins. Further, molecular dynamic simulation studies showed that this lead molecule has better conformational stability and compatibility with drug-resistant PncA proteins in comparison to PZA drug. We hypothesized that the predicted lead compound could be more effective, and thus may improve the treatment of PZA resistant tuberculosis.


Assuntos
Amidoidrolases/química , Antituberculosos/química , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana Múltipla , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/análogos & derivados , Pirazinamida/química , Amidoidrolases/genética , Antituberculosos/uso terapêutico , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação , Mycobacterium tuberculosis/genética , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Pirazinamida/uso terapêutico , Homologia Estrutural de Proteína , Tuberculose/tratamento farmacológico
6.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28739828

RESUMO

Mycobacterium tuberculosis primarily infects lung macrophages. However, a recent study showed that M. tuberculosis also infects and persists in a dormant form inside bone marrow mesenchymal stem cells (BM-MSCs) even after successful antibiotic therapy. However, the mechanism(s) by which M. tuberculosis survives in BM-MSCs is still not known. Like macrophages, BM-MSCs do not contain a well-defined endocytic pathway, which is known to play a central role in the clearance of internalized mycobacteria. Here, we studied the fate of virulent and avirulent mycobacteria in Sca-1+ CD44+ BM-MSCs. We found that BM-MSCs were able to kill avirulent Mycobacterium smegmatis and Mycobacterium bovis BCG but not the pathogenic species M. tuberculosis Further mechanistic studies revealed that pathogenic M. tuberculosis dampens the antibacterial response of BM-MSCs by downregulating the expression of the cationic antimicrobial peptide cathelicidin. In contrast, avirulent mycobacteria were effectively killed by inducing the Toll-like receptor 2/4 (TLR2/4) pathway-dependent expression of cathelicidin, while small interfering RNA (siRNA)-mediated cathelicidin silencing increased the survival of M. bovis BCG in BM-MSCs. We also showed that M. bovis BCG infection caused increased expression levels of MyD88, phospho-interleukin-1 receptor-associated kinase 4 (pIRAK-4), and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Further downstream investigations demonstrated that IRAK-4-p38 activation increased the nuclear translocation of NF-κB, which subsequently induced the expression of cathelicidin and the cytokine interleukin-1ß (IL-1ß), resulting in the decreased survival of M. bovis BCG. On the other hand, inhibition of TLR2/4, pIRAK-4, p38, and NF-κB nuclear translocation decreased cathelicidin and IL-1ß expression levels and therefore increased the survival of avirulent mycobacteria. This is the first report that demonstrates that virulent mycobacteria manipulate the TLR2/4-MyD88-IRAK-4-p38-NF-κB-Camp-IL-1ß pathway to survive inside bone marrow stem cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Células da Medula Óssea/microbiologia , Receptores de Hialuronatos/imunologia , Células-Tronco Mesenquimais/imunologia , Mycobacterium tuberculosis/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Regulação para Baixo , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais/microbiologia , Camundongos , Mycobacterium bovis/fisiologia , Mycobacterium smegmatis/fisiologia , Mycobacterium tuberculosis/patogenicidade , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Catelicidinas
7.
Nanotechnology ; 28(16): 165101, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28206982

RESUMO

The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.


Assuntos
Citocinas/metabolismo , Linfócitos Intraepiteliais/imunologia , Lipídeos/administração & dosagem , Mycobacterium tuberculosis/química , Nanopartículas/administração & dosagem , Animais , Materiais Biocompatíveis , Quitosana/química , Endocitose/fisiologia , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Linfócitos Intraepiteliais/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/imunologia
8.
J Biol Chem ; 290(21): 13321-43, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25825498

RESUMO

Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.


Assuntos
Autofagia , Macrófagos/imunologia , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Nicotinamida Fosforribosiltransferase/metabolismo , Estresse Oxidativo , Tuberculose/imunologia , Peixe-Zebra/imunologia , Animais , Apoptose , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Parede Celular/metabolismo , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/citologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Mycobacterium marinum/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , NF-kappa B , Nicotinamida Fosforribosiltransferase/genética , Fagocitose , Conformação Proteica , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia , Virulência/imunologia , Peixe-Zebra/metabolismo , Peixe-Zebra/microbiologia
9.
Microb Pathog ; 100: 124-132, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27622344

RESUMO

In the present study, chitosan coated Ag/ZnO (CS/Ag/ZnO) nanocomposite was synthesized and characterized by UV-Vis spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The CS/Ag/ZnO nanocomposite exhibited antibacterial activity against Gram positive (B. licheniformis and B. cereus) bacteria at 8 µg mL-1 compared to Gram negative (V. parahaemolyticus. and P. vulgaris) bacteria. CS/Ag/ZnO nanocomposite effectively inhibited the biofilm growth of Gram positive bacteria compared to Gram negative bacteria at 30 µg mL-1. The hydrophobicity index and EPS (extracellular polysaccharide) production of both Gram positive and Gram negative bacteria was decreased after treatment with 30 µg mL-1 of CS/Ag/ZnO nanocomposite. CS/Ag/ZnO nanocomposite showed effective control of fungal C. albicans biofilm (92%) at 50 µg mL-1. The inhibition of bacterial and fungal biofilms was clearly visualized under light and confocal laser scanning microscopy (CLSM). CS/Ag/ZnO nanocomposite was observed to be non toxic to RAW264.7 murine macrophages and no changes in the morphology of macrophages was observed under phase contrast microscopy. The study concludes that CS/Ag/ZnO nanocomposite is the promising candidate to be used as biomaterial against bacterial and fungal infections without any toxicity risk.


Assuntos
Anti-Infecciosos/farmacologia , Quitosana/metabolismo , Portadores de Fármacos/metabolismo , Macrófagos/efeitos dos fármacos , Nanocompostos/química , Prata/farmacologia , Óxido de Zinco/farmacologia , Animais , Anti-Infecciosos/toxicidade , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/metabolismo , Candida albicans/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Células RAW 264.7 , Prata/toxicidade , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/toxicidade
10.
Bioorg Med Chem Lett ; 26(24): 5943-5946, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27865704

RESUMO

A new series of caffemide were synthesized and their antioxidant and antibacterial activities were explored. Antioxidant and antibacterial activities were measured of different structures of caffemide containing different functional groups. Anti-oxidative caffemides 1b and 1g showed significantly higher activity against different bacteria with MIC values less than 50µg/ml. These anti-oxidative and antibacterial properties of caffemides might be helpful for the treatment of secondary infections and discovery of new antibiotics.


Assuntos
Aminofenóis/farmacologia , Antibacterianos/farmacologia , Ácidos Cafeicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Aminofenóis/síntese química , Aminofenóis/química , Antibacterianos/síntese química , Antibacterianos/química , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/química , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Biol Chem ; 289(6): 3555-70, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24297177

RESUMO

L-Asparaginase-II from Escherichia coli (EcA) is a central component in the treatment of acute lymphoblastic leukemia (ALL). However, the therapeutic efficacy of EcA is limited due to immunogenicity and a short half-life in the patient. Here, we performed rational mutagenesis to obtain EcA variants with a potential to improve ALL treatment. Several variants, especially W66Y and Y176F, killed the ALL cells more efficiently than did wild-type EcA (WT-EcA), although nonleukemic peripheral blood monocytes were not affected. Several assays, including Western blotting, annexin-V/propidium iodide binding, comet, and micronuclei assays, showed that the reduction in viability of leukemic cells is due to the increase in caspase-3, cytochrome c release, poly(ADP-ribose) polymerase activation, down-regulation of anti-apoptotic protein Bcl-XL, an arrest of the cell cycle at the G0/G1 phase, and eventually apoptosis. Both W66Y and Y176F induced significantly more apoptosis in lymphocytes derived from ALL patients. In addition, Y176F and Y176S exhibited greatly decreased glutaminase activity, whereas K288S/Y176F, a variant mutated in one of the immunodominant epitopes, showed reduced antigenicity. Further in vivo immunogenicity studies in mice showed that K288S/Y176F was 10-fold less immunogenic as compared with WT-EcA. Moreover, sera obtained from WT-EcA immunized mice and ALL patients who were given asparaginase therapy for several weeks recognized the K288S/Y176F mutant significantly less than the WT-EcA. Further mechanistic studies revealed that W66Y, Y176F, and K288S/Y176F rapidly depleted asparagine and also down-regulated the transcription of asparagine synthetase as compared with WT-EcA. These highly desirable attributes of these variants could significantly advance asparaginase therapy of leukemia in the future.


Assuntos
Antineoplásicos , Asparaginase , Epitopos de Linfócito B , Proteínas de Escherichia coli , Mutação de Sentido Incorreto , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Substituição de Aminoácidos , Animais , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Asparaginase/genética , Asparaginase/imunologia , Asparaginase/farmacologia , Caspase 3/genética , Caspase 3/imunologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citocromos c/genética , Citocromos c/imunologia , Citocromos c/metabolismo , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Proteína bcl-X/genética , Proteína bcl-X/imunologia , Proteína bcl-X/metabolismo
13.
Biochim Biophys Acta ; 1844(7): 1219-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24721562

RESUMO

Bacterial asparaginases (EC 3.5.1.1) have attracted considerable attention because enzymes of this group are used in the therapy of certain forms of leukemia. Class II asparaginase from Escherichia coli (EcA), a homotetramer with a mass of 138 kDa, is especially effective in cancer therapy. However, the therapeutic potential of EcA is impaired by the limited stability of the enzyme in vivo and by the induction of antibodies in the patients. In an attempt to modify the properties of EcA, several variants with amino acid replacements at subunit interfaces were constructed and characterized. Chemical and thermal denaturation analysis monitored by activity, fluorescence, circular dichroism, and differential scanning calorimetry showed that certain variants with exchanges that weaken dimer-dimer interactions exhibited complex denaturation profiles with active dimeric and/or inactive monomeric intermediates appearing at low denaturant concentrations. By contrast, other EcA variants showed considerably enhanced activity and stability as compared to the wild-type enzyme. Thus, even small changes at a subunit interface may markedly affect EcA stability without impairing its catalytic properties. Variants of this type may have a potential for use in the asparaginase therapy of leukemia.


Assuntos
Asparaginase/química , Asparaginase/metabolismo , Escherichia coli/enzimologia , Mutação/genética , Asparaginase/genética , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Estabilidade Enzimática , Escherichia coli/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Desnaturação Proteica
14.
Antimicrob Agents Chemother ; 59(2): 763-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25403677

RESUMO

N-acylated homoserine lactonases are known to inhibit the signaling molecules of the biofilm-forming pathogens. In this study, gold nanoparticles were coated with N-acylated homoserine lactonase proteins (AiiA AuNPs) purified from Bacillus licheniformis. The AiiA AuNPs were characterized by UV-visible spectra, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized AiiA AuNPs were found to be spherical in shape and 10 to 30 nm in size. Treatment with AiiA protein-coated AuNPs showed maximum reduction in exopolysaccharide production, metabolic activities, and cell surface hydrophobicity and potent antibiofilm activity against multidrug-resistant Proteus species compared to treatment with AiiA protein alone. AiiA AuNPs exhibited potent antibiofilm activity at 2 to 8 µM concentrations without being harmful to the macrophages. We conclude that at a specific dose, AuNPs coated with AiiA can kill bacteria without harming the host cells, thus representing a potential template for the design of novel antibiofilm and antibacterial protein drugs to decrease bacterial colonization and to overcome the problem of drug resistance. In summary, our data suggest that the combined effect of the lactonase and the gold nanoparticles of the AiiA AuNPs has promising antibiofilm activity against biofilm-forming and multidrug-resistant Proteus species.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bacillus/enzimologia , Biofilmes/efeitos dos fármacos , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Proteus/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteus/crescimento & desenvolvimento
15.
Nanomedicine ; 10(6): 1195-208, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24607937

RESUMO

Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. FROM THE CLINICAL EDITOR: This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications.


Assuntos
Antibacterianos/uso terapêutico , Mycobacterium/efeitos dos fármacos , Nanopartículas/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Mycobacterium/fisiologia , Infecções por Mycobacterium/tratamento farmacológico , Nanopartículas/química , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Pele/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
16.
BMC Complement Altern Med ; 14: 87, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24597853

RESUMO

BACKGROUND: Artemisia nilagirica (Asteraceae) and Murraya koenigii (Rutaceae) are widely distributed in eastern region of India. Leaves of Artemisia nilagirica plant are used to treat cold and cough by the local tribal population in east India. Murraya koenigii is an edible plant previously reported to have an antibacterial activity. Pathogenic strains of mycobacteria are resistant to most of the conventional antibiotics. Therefore, it is imperative to identify novel antimycobacterial molecules to treat mycobacterial infection. METHODS: In this study, ethanol, petroleum ether and water extracts of Artemisia nilagirica and Murraya koenigii were tested for antibacterial activity against Mycobacterium smegmatis and Mycobacterium bovis BCG in synergy with first line anti-tuberculosis (TB) drugs, and for cytotoxic activities on mouse macrophage RAW264.7 cells. Antibacterial activity was determined by colony forming unit (CFU) assay. Intracellular survival assay was performed by infecting RAW264.7 cells with M. smegmatis before and after treatment with plant extracts. Cytotoxity was checked by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay. Genotoxicity was studied by DAPI staining and COMET assay using mouse macrophage RAW264.7 cell line. Cell apoptosis was checked by Annexin-V/FITC dual staining method. Reactive oxygen species and nitric oxide production was checked by DCFH staining and Griess reagent, respectively. RESULTS: Ethanol extracts of A. nilagirica (IC50 300 µg/ml) and M. koenigii (IC50 400 µg/ml) were found to be more effective against Mycobacterium smegmatis as compared to petroleum ether and water extracts. M. koenigii extract showed maximum activity against M. bovis BCG in combination with a first line anti-TB drug rifampicin. M. koenigii leaf extract also exerted more cytototoxic (IC50 20 µg/ml), genotoxic and apoptosis in mouse macrophage RAW 264.7 cell line. Treatment of mouse macrophages with A. nilagirica extract increased intracellular killing of M. smegmatis by inducing production of reactive oxygen species and nitric oxide. CONCLUSIONS: Ethanol extracts of A. nilagirica and M. koenigii were found to be more effective against mycobacteria. As compared to A. nilagirica, M. koenigii ethanol extract exhibited significant synergistic antibacterial activity against M. smegmatis and M. bovis BCG in combination with anti-tuberculosis drug rifampicin, and also showed increased cytotoxicity, DNA damage and apoptosis in mouse macrophages.


Assuntos
Artemisia/química , Macrófagos/efeitos dos fármacos , Murraya/química , Mycobacterium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Antituberculosos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sinergismo Farmacológico , Camundongos , Extratos Vegetais/toxicidade
17.
Ann Hum Biol ; 41(6): 540-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24689793

RESUMO

BACKGROUND: Genes encoding KIR receptors are clustered in one of the most variable regions of the human genome. KIR gene frequencies vary in worldwide populations and reveal high probability of individuals differing in their gene content. AIM: This study aimed to investigate KIR diversity among the northern Indian population who share features with either Western Eurasian or East Asian populations. It sought to decipher how northern Indians are associated phylogenetically with global populations whilst also focusing on differentiation of populations. SUBJECTS AND METHODS: This paper studied 867 northern Indians using PCR-SSP. Gene and genotypic frequencies were calculated, using statistical analyses. Findings were compared against 76 global populations of differing ethnicities. RESULTS: This northern Indian population shared characteristics with Western Eurasian or Asian Indian populations, as is evident from genetic distance, clustered heatmap, phylogenetic assessment and principal component analysis. The findings are consistent with the demographic history of northern India, including specific features, such as presence of comparatively high KIR B-haplotype as compared to A-haplotype. CONCLUSION: KIR frequencies and profiles of northern Indians were more similar to Western Eurasians, Africans and Asian Indians. This may suggest that KIR genes are under constant evolutionary pressures and selection, which may be linked to different invading pathogens.


Assuntos
Povo Asiático/genética , Etnicidade/genética , Receptores KIR/genética , Frequência do Gene , Variação Genética , Genótipo , Haplótipos , Humanos , Índia , Reação em Cadeia da Polimerase
18.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319030

RESUMO

Protein S-palmitoylation mediated by DHHCs is recognized as a distinct and reversible form of lipid modification connected with several health perturbations, including neurodegenerative disorders, cancer, and autoimmune conditions. However, the pharmacological characteristics of current pan-DHHC inhibitors, particularly their toxicity and off-target effects, have hindered their in-depth cellular investigations. The therapeutic properties of the natural compounds, with minimal side effects, allowed us to evaluate them as DHHC-targeting inhibitors. Here, we performed an insilico screening of 115 phytochemicals to assess their interactions with the DHHC20 binding site. Among these compounds, lutein, 5-hydroxyflavone, and 6-hydroxyflavone exhibited higher binding energy (-9.2, -8.5, and -8.5 kcal/mol) in the DHHC20 groove compared to pan-DHHC inhibitor 2-BP (-7.0 kcal/mol). Furthermore, we conducted a 100 ns MD simulation to evaluate the stability of these complexes under physiological conditions. The MDsimulation results indicated that DHHC20 formed a more stable conformation with lutein compared to 5-hydroxyflavone and 6-hyroxyflavone via hydrophobic and H-bond interactions. Conclusively, these results could serve as a promising starting point for exploring the use of these natural molecules as DHHC20 inhibitors.Communicated by Ramaswamy H. Sarma.

19.
Transl Oncol ; 43: 101909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412663

RESUMO

INTRODUCTION: Escherichia coli l-asparaginase (EcA), an integral part of multi-agent chemotherapy protocols of acute lymphoblastic leukemia (ALL), is constrained by safety concerns and the development of anti-asparaginase antibodies. Novel variants with better pharmacological properties are desirable. METHODS: Thousands of novel EcA variants were constructed using protein engineering approach. After preliminary screening, two mutants, KHY-17 and KHYW-17 were selected for further development. The variants were characterized for asparaginase activity, glutaminase activity, cytotoxicity and antigenicity in vitro. Immunogenicity, pharmacokinetics, safety and efficacy were tested in vivo. Binding of the variants to pre-existing antibodies in primary and relapsed ALL patients' samples was evaluated. RESULTS: Both variants showed similar asparaginase activity but approximately 24-fold reduced glutaminase activity compared to wild-type EcA (WT). Cytotoxicity against Reh cells was significantly higher with the mutants, although not toxic to human PBMCs than WT. The mutants showed approximately 3-fold lower IgG and IgM production compared to WT. Pharmacokinetic study in BALB/c mice showed longer half-life of the mutants (KHY-17- 267.28±9.74; KHYW-17- 167.41±14.4) compared to WT (103.24±18). Single and repeat-doses showed no toxicity up to 2000 IU/kg and 1600 IU/kg respectively. Efficacy in ALL xenograft mouse model showed 80-90 % reduction of leukemic cells with mutants compared to 40 % with WT. Consequently, survival was 90 % in each mutant group compared to 10 % with WT. KHYW-17 showed over 2-fold lower binding to pre-existing anti-asparaginase antibodies from ALL patients treated with l-asparaginase. CONCLUSION: EcA variants demonstrated better pharmacological properties compared to WT that makes them good candidates for further development.

20.
ACS Omega ; 9(2): 2286-2301, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250397

RESUMO

Epidermal growth factor receptor (EGFR)-targeted therapy has been proven vital in the last two decades for the treatment of multiple cancer types, including nonsmall cell lung cancer, glioblastoma, breast cancer and head and neck squamous cell carcinoma. Unfortunately, the majority of approved EGFR inhibitors fall into the drug resistance category because of continuous mutations and acquired resistance. Recently, autophagy has surfaced as one of the emerging underlying mechanisms behind resistance to EGFR-tyrosine kinase inhibitors (TKIs). Previously, we developed a series of 4″-alkyl EGCG (4″-Cn EGCG, n = 6, 8, 10, 12, 14, 16, and 18) derivatives with enhanced anticancer effects and stability. Therefore, the current study hypothesized that 4″-alkyl EGCG might induce cytoprotective autophagy upon EGFR inhibition, and inhibition of autophagy may lead to improved cytotoxicity. In this study, we have observed growth inhibition and caspase-3-dependent apoptosis in 4″-alkyl EGCG derivative-treated glioblastoma cells (U87-MG). We also confirmed that 4″-alkyl EGCG could inhibit EGFR in the cells, as well as mutant L858R/T790M EGFR, through an in vitro kinase assay. Furthermore, we have found that EGFR inhibition with 4″-alkyl EGCG induces cytoprotective autophagic responses, accompanied by the blockage of the AKT/mTOR signaling pathway. In addition, cytotoxicity caused by 4″-C10 EGCG, 4″-C12 EGCG, and 4″-C14 EGCG was significantly increased after the inhibition of autophagy by the pharmacological inhibitor chloroquine. These findings enhance our understanding of the autophagic response toward EGFR inhibitors in glioblastoma cells and suggest a potent combinatorial strategy to increase the therapeutic effectiveness of EGFR-TKIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA