Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cancer Cell Int ; 23(1): 165, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568162

RESUMO

BACKGROUND: Breast malignancies are the predominant cancer-related cause of death in women. New methods of diagnosis, prognosis and treatment are necessary. Previously, we identified the breast cancer cell surface protein ADAM8 as a marker of poor survival, and a driver of Triple-Negative Breast Cancer (TNBC) growth and spread. Immunohistochemistry (IHC) with a research-only anti-ADAM8 antibody revealed 34.0% of TNBCs (17/50) expressed ADAM8. To identify those patients who could benefit from future ADAM8-based interventions, new clinical tests are needed. Here, we report on the preclinical development of a highly specific IHC assay for detection of ADAM8-positive breast tumors. METHODS: Formalin-fixed paraffin-embedded sections of ADAM8-positive breast cell lines and patient-derived xenograft tumors were used in IHC to identify a lead antibody, appropriate staining conditions and controls. Patient breast cancer samples (n = 490) were used to validate the assay. Cox proportional hazards models assessed association between survival and ADAM8 expression. RESULTS: ADAM8 staining conditions were optimized, a lead anti-human ADAM8 monoclonal IHC antibody (ADP2) identified, and a breast staining/scoring control cell line microarray (CCM) generated expressing a range of ADAM8 levels. Assay specificity, reproducibility, and appropriateness of the CCM for scoring tumor samples were demonstrated. Consistent with earlier findings, 36.1% (22/61) of patient TNBCs expressed ADAM8. Overall, 33.9% (166/490) of the breast cancer population was ADAM8-positive, including Hormone Receptor (HR) and Human Epidermal Growth Factor Receptor-2 (HER2) positive cancers, which were tested for the first time. For the most prevalent HR-positive/HER2-negative subtype, high ADAM8 expression identified patients at risk of poor survival. CONCLUSIONS: Our studies show ADAM8 is widely expressed in breast cancer and provide support for both a diagnostic and prognostic value of the ADP2 IHC assay. As ADAM8 has been implicated in multiple solid malignancies, continued development of this assay may have broad impact on cancer management.

2.
Carcinogenesis ; 39(7): 921-930, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29579155

RESUMO

The propeptide (LOX-PP) domain of the lysyl oxidase proenzyme was shown to inhibit the transformed phenotype of breast, lung and pancreatic cells in culture and the formation of Her2/neu-driven breast cancer in a xenograft model. A single nucleotide polymorphism (SNP, rs1800449) positioned in a highly conserved region of LOX-PP results in an Arg158Gln substitution (humans). This arginine (Arg)→glutamine (Gln) substitution profoundly impaired the ability of LOX-PP to inhibit the invasive phenotype and xenograft tumor formation. To study the effect of the SNP in vivo, here we established a knock in (KI) mouse line (LOX-PPGln mice) expressing an Arg152Gln substitution corresponding to the human Arg158Gln polymorphism. Breast cancer was induced in wild-type (WT) and LOX-PPGln female mice beginning at 6 weeks of age by treatment with 7,12-dimethylbenz(a)anthracene (DMBA) in combination with progesterone. Time course analysis of tumor development demonstrated earlier tumor onset and shorter overall survival in LOX-PPGln versus WT mice. To further compare the tumor burden in WT and LOX-PPGln mice, inguinal mammary glands from both groups of mice were examined for microscopic lesion formation. LOX-PPGln glands contained more lesions (9.6 versus 6.9 lesions/#4 bilateral). In addition, more DMBA-treated LOX-PPGln mice had increased leukocyte infiltrations in their livers and were moribund compared with DMBA-treated WT mice. Thus, these data indicate that the Arg→Gln substitution in LOX-PP could be an important marker associated with a more aggressive cancer phenotype and that this KI model is ideal for further mechanistic studies regarding the tumor suppressor function of LOX-PP.


Assuntos
Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/genética , Carcinógenos/toxicidade , Proteínas da Matriz Extracelular/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína-Lisina 6-Oxidase/genética , Animais , Biomarcadores Tumorais/genética , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Linhagem Celular Tumoral , Genes Supressores de Tumor/efeitos dos fármacos , Xenoenxertos , Camundongos , Camundongos Endogâmicos C57BL
3.
J Cell Biochem ; 118(8): 2347-2356, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28106301

RESUMO

The lysyl oxidase proenzyme propeptide region (LOX-PP) is a tumor suppressor protein whose mechanism of action is not completely understood. Here, the Ubiquitously expressed Transcript (UXT) was identified in a yeast two-hybrid assay with LOX-PP as bait and confirmed as a novel LOX-PP associating protein. UXT, a prefoldin-like protein, is ubiquitous in human and mouse. Since UXT modulates androgen receptor transcriptional activity in prostate cancer, we studied its role in breast cancer. Breast tumors and derived cell lines overexpressed UXT. UXT was able to associate with the estrogen receptor alpha (ER) and decrease its transcriptional activity and target gene expression. Conversely, UXT knockdown increased ER element-dependent transcriptional activity. Ectopic LOX-PP relocalized UXT to the cytoplasm and decreased its stability. UXT ubiquitination and depletion in the presence of LOX-PP was rescued by a proteasomal inhibitor. In summary, proteasome-mediated turnover of UXT upon interaction with LOX-PP releases repression of ER transcriptional activity. J. Cell. Biochem. 118: 2347-2356, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Neoplasias da Mama/genética , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Células MCF-7 , Camundongos , Chaperonas Moleculares/genética , Proteínas de Neoplasias/genética , Ligação Proteica , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
4.
Breast Cancer Res ; 18(1): 40, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27039296

RESUMO

BACKGROUND: ADAM8 (a disintegrin and metalloproteinase 8) protein promotes the invasive and metastatic phenotype of triple-negative breast cancer (TNBC) cells. High ADAM8 expression in breast cancer patients is an independent predictor of poor prognosis. Here, we investigated whether ADAM8 regulates specific miRNAs, their roles in aggressive phenotype, and potential use as biomarkers of disease. METHODS: Microarray analysis was performed on RNA from MDA-MB-231 cells after transient ADAM8 knockdown using TaqMan miRNA cards. Changes in miRNA levels were confirmed using two ADAM8 siRNAs in TNBC cell lines. Kinase inhibitors, ß1-integrin antagonist antibody, and different forms of ADAM8 were employed to elucidate the signaling pathway required for miR-720 expression. miR-720 levels were modulated using a specific antagomiR or a mimic, and effects on aggressive phenotype of TNBC cells were determined using Boyden chamber and 3D-Matrigel outgrowth assays. Plasma was isolated from mice before and after implantation of MDA-MB-231 cells and analyzed for miR-720 levels. Serum samples of TNBC patients were evaluated for their ADAM8 and miR-720 levels. RESULTS: We identified 68 miRNAs differentially regulated upon ADAM8 knockdown, including decreased levels of secreted miR-720. Ectopic overexpression of wild-type ADAM8 or forms that lack metalloproteinase activity similarly induced miR-720 levels. The disintegrin and cysteine-rich domains of ADAM8 were shown to induce miR-720 via activation of a ß1-integrin to ERK signaling cascade. Knockdown of miR-720 led to a significant decrease in migratory and invasive abilities of TNBC cells. Conversely, miR-720 overexpression rescued these properties. A profound increase in plasma levels of miR-720 was detected 7 days after TNBC cell inoculation into mouse mammary fat pads when tumors were barely palpable. Concordantly, miR-720 levels were found to be significantly higher in serum samples of TNBC patients with high ADAM8 expression. CONCLUSIONS: We have shown for the first time that miR-720 is induced by ADAM8 signaling via ERK and plays an essential role in promoting the aggressive phenotype of TNBCs. miR-720 is elevated in serum of patients with ADAM8-high TNBC and, in a group with other miRNAs downstream of ADAM8, holds promise as a biomarker for early detection of or treatment response of ADAM8-positive TNBCs.


Assuntos
Proteínas ADAM/biossíntese , Proteínas de Membrana/biossíntese , MicroRNAs/biossíntese , Invasividade Neoplásica/genética , Neoplasias de Mama Triplo Negativas/genética , Proteínas ADAM/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Camundongos , MicroRNAs/genética , RNA Interferente Pequeno , Neoplasias de Mama Triplo Negativas/patologia
5.
J Biol Chem ; 289(48): 33676-88, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25336660

RESUMO

The transmembrane ADAM8 (A Disintegrin And Metalloproteinase 8) protein is abundantly expressed in human breast tumors and derived metastases compared with normal breast tissue, and plays critical roles in aggressive Triple-Negative breast cancers (TNBCs). During ADAM8 maturation, the inactive proform dimerizes or multimerizes and autocatalytically removes the prodomain leading to the formation of the active, processed form. ADAM8 is a glycoprotein; however, little was known about the structure or functional role of these sugar moieties. Here, we report that in estrogen receptor (ER)α-negative, but not -positive, breast cancer cells ADAM8 contains N-glycosylation, which is required for its correct processing and activation. Consistently ADAM8 dimers were detected on the surface of ERα-negative breast cancer cells but not on ERα-positive ones. Site-directed mutagenesis confirmed four N-glycosylazhytion sites (Asn-67, Asn-91, Asn-436, and Asn-612) in human ADAM8. The Asn-67 and Asn-91 prodomain sites contained high mannose, whereas complex type N-glycosylation was observed on Asn-436 and Asn-612 in the active and remnant forms. The Asn-91 and Asn-612 sites were essential for its correct processing and cell surface localization, in particular its exit from the Golgi and endoplasmic reticulum, respectively. The N436Q mutation led to decreased ADAM8 stability due to enhanced lysosomal degradation. In contrast, mutation of the Asn-67 site had only modest effects on enzyme stability and processing. Thus, N-glycosylation is essential for processing, localization, stability, and activity of ADAM8.


Assuntos
Proteínas ADAM/metabolismo , Neoplasias da Mama/enzimologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise , Proteínas ADAM/genética , Substituição de Aminoácidos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ativação Enzimática , Estabilidade Enzimática/genética , Receptor alfa de Estrogênio , Feminino , Glicosilação , Células HEK293 , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Transporte Proteico/genética
6.
Nat Cell Biol ; 9(4): 470-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369819

RESUMO

Aberrant constitutive expression of c-Rel, p65 and p50 NF-kappaB subunits has been reported in over 90% of breast cancers. Recently, we characterized a de novo RelB NF-kappaB subunit synthesis pathway, induced by the cytomegalovirus (CMV) IE1 protein, in which binding of p50-p65 NF-kappaB and c-Jun-Fra-2 AP-1 complexes to the RELB promoter work in synergy to potently activate transcription. Although RelB complexes were observed in mouse mammary tumours induced by either ectopic c-Rel expression or carcinogen exposure, little is known about RelB in human breast disease. Here, we demonstrate constitutive de novo RelB synthesis is selectively active in invasive oestrogen receptor alpha (ERalpha)-negative breast cancer cells. ERalpha signalling reduced levels of functional NF-kappaB and Fra-2 AP-1 and inhibited de novo RelB synthesis, leading to an inverse correlation between RELB and ERalpha gene expression in human breast cancer tissues and cell lines. Induction of Bcl-2 by RelB promoted the more invasive phenotype of ERalpha-negative cancer cells. Thus, inhibition of de novo RelB synthesis represents a new mechanism whereby ERalpha controls epithelial to mesenchymal transition (EMT).


Assuntos
Estrogênios/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/fisiologia , Fator de Transcrição RelB/genética , Animais , Northern Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Transformação Celular Neoplásica/genética , Ensaio de Desvio de Mobilidade Eletroforética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/fisiologia , Feminino , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Camundongos , Microscopia de Fluorescência , NF-kappa B/genética , NF-kappa B/metabolismo , Fenótipo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição RelB/metabolismo
7.
Pharmaceutics ; 16(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675197

RESUMO

New targeted treatments are urgently needed to improve triple-negative breast cancer (TNBC) patient survival. Previously, we identified the cell surface protein A Disintegrin And Metalloprotease 8 (ADAM8) as a driver of TNBC tumor growth and spread via its metalloproteinase and disintegrin (MP and DI) domains. In proof-of-concept studies, we demonstrated that a monoclonal antibody (mAb) that simultaneously inhibits both domains represents a promising therapeutic approach. Here, we screened a hybridoma library using a multistep selection strategy, including flow cytometry for Ab binding to native conformation protein and in vitro cell-based functional assays to isolate a novel panel of highly specific human ADAM8 dual MP and DI inhibitory mAbs, called ADPs. The screening of four top candidates for in vivo anti-cancer activity in an orthotopic MDA-MB-231 TNBC model of ADAM8-driven primary growth identified two lead mAbs, ADP2 and ADP13. Flow cytometry, hydrogen/deuterium exchange-mass spectrometry (HDX-MS) and alanine (ALA) scanning mutagenesis revealed that dual MP and DI inhibition was mediated via binding to the DI. Further testing in mice showed ADP2 and ADP13 reduce aggressive TNBC characteristics, including locoregional regrowth and metastasis, and improve survival, demonstrating strong therapeutic potential. The continued development of these mAbs into an ADAM8-targeted therapy could revolutionize TNBC treatment.

8.
Biochemistry ; 49(13): 2962-72, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20192271

RESUMO

Lysyl oxidase enzyme activity is critical for the biosynthesis of mature and functional collagens and elastin. In addition, lysyl oxidase has tumor suppressor activity that has been shown to depend on the propeptide region (LOX-PP) derived from pro-lysyl oxidase (Pro-LOX) and not on lysyl oxidase enzyme activity. Pro-LOX is secreted as a 50 kDa proenzyme and then undergoes biosynthetic proteolytic processing to active approximately 30 kDa LOX enzyme and LOX-PP. The present study reports the efficient recombinant expression and purification of rat LOX-PP. Moreover, using enzymatic deglycosylation and DTT derivatization combined with mass spectrometry technologies, it is shown for the first time that rLOX-PP and naturally occurring LOX-PP contain both N- and O-linked carbohydrates. Structure predictions furthermore suggest that LOX-PP is a mostly disordered protein, which was experimentally confirmed in circular dichroism studies. Due to its high isoelectric point and its disordered structure, we propose that LOX-PP can associate with extracellular and intracellular binding partners to affect its known biological activities as a tumor suppressor and inhibitor of cell proliferation.


Assuntos
Proteína-Lisina 6-Oxidase/química , Animais , Dicroísmo Circular , Clonagem Molecular/métodos , Precursores Enzimáticos , Glicosilação , Espectrometria de Massas , Ligação Proteica , Conformação Proteica , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/isolamento & purificação , Ratos , Proteínas Recombinantes
9.
J Cell Biochem ; 111(5): 1160-8, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20717927

RESUMO

RAS mutations or its activation by upstream receptor tyrosine kinases are frequently associated with poor response of carcinomas to chemotherapy. The 18 kDa propeptide domain of lysyl oxidase (LOX-PP) released from the secreted precursor protein (Pro-LOX) has been shown to inhibit RAS signaling and the transformed phenotype of breast, pancreatic, lung, and prostate cancer cells in culture, and formation of tumors by Her-2/neu-driven breast cancer cells in a mouse xenograft model. Here, we tested the effects of LOX-PP on MIA PaCa-2 pancreatic cancer cells, driven by mutant RAS. In MIA PaCa-2 cells in culture, LOX-PP attenuated the ERK and AKT activities and decreased the levels of the NF-κB p65 and RelB subunits and cyclin D1, which are activated by RAS signaling. In mouse xenograft growth, LOX-PP reduced growth of tumors by these pancreatic cancer cells, and the nuclear levels of the p65 NF-κB subunit and cyclin D1 proteins. While biological agents attenuate tumor growth when used alone, often they have additive or synergistic effects when used in combination with chemotherapeutic agents. Thus, we next tested the hypotheses that LOX-PP sensitizes pancreatic and breast cancer cells to the chemotherapeutic agent doxorubicin. Purified LOX-PP enhanced the cytotoxic effects of doxorubicin in pancreatic and breast cancer cells, as judged by ATP production, Cell Death ELISA assays, caspase 3 activation, PARP cleavage, and Annexin V staining. Thus, LOX-PP potentiates the cytotoxicity of doxorubicin on breast and pancreatic cancer cells, warranting additional studies with a broader spectrum of current cancer treatment modalities.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Proteína-Lisina 6-Oxidase/farmacologia , Animais , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Precursores Enzimáticos , Feminino , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Cell Biochem ; 109(4): 702-10, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20052674

RESUMO

The p53 homologue p63 encodes multiple protein isoforms either with (TA) or without (DeltaN) the N-terminal transactivation domain. Accumulating evidence indicates that TAp63 plays an important role in various biological processes, including cell proliferation, differentiation, and apoptosis. However, how TAp63 is regulated remains largely unclear. In this study, we demonstrate that NF-kappaB induces TAp63 gene expression. The responsible elements for NF-kappaB-mediated TAp63 induction are located within the region from -784 to -296 bp in the TAp63 promoter, which contains two NF-kappaB binding sites. Ectopic expression of RelA stimulates TAp63 promoter-driven reporter activity and increases endogenous TAp63 mRNA levels. Inhibition of NF-kappaB by IkappaBalpha super-repressor or with a chemical inhibitor leads to down regulation of TAp63 mRNA expression and activity. In addition, mutations in the critical NF-kappaB-binding sites significantly abolish the effects of NF-kappaB on TAp63. Activation of NF-kappaB by TNFalpha enhances p50/RelA binding to the NF-kappaB binding sites. Furthermore, we show that an Sp1 site adjacent to the NF-kappaB sites plays a role in NF-kappaB-mediated upregulation of TAp63. Taken together, these data reveal that TAp63 is a transcriptional target of NF-kappaB, which may play a role in cell proliferation, differentiation and survival upon NF-kappaB activation by various stimuli.


Assuntos
NF-kappa B/fisiologia , Transativadores/genética , Ativação Transcricional , Proteínas Supressoras de Tumor/genética , Sítios de Ligação/genética , Linhagem Celular , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição , Regulação para Cima/genética
11.
J Clin Invest ; 117(12): 4009-21, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18037997

RESUMO

The vast majority of primary human breast cancer tissues display aberrant nuclear NF-kappaB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor alpha (ERalpha) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCtheta-Akt pathway that leads to downregulation of ERalpha synthesis and derepression of c-Rel. ERalpha levels were lower in c-Rel-induced mammary tumors compared with normal mammary gland tissue. PKCtheta induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2alpha-driven mouse mammary tumor-derived cell lines. RNA expression levels of PKCtheta and c-Rel target genes were inversely correlated with ERalpha levels in human breast cancer specimens. PKCtheta activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERalpha and p27(Kip1). Thus we have shown that activation of PKCtheta inhibits the FOXO3a/ERalpha/p27(Kip1) axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/biossíntese , Isoenzimas/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoenzimas/genética , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Fenótipo , Proteína Quinase C/genética , Proteína Quinase C-theta , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética , Transdução de Sinais/genética
12.
J Cell Physiol ; 220(3): 593-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19373868

RESUMO

Aberrant constitutive expression of the NF-kappaB c-Rel and RelA subunits in breast cancer cells was shown to promote their survival. Recently, we demonstrated that aggressive breast cancers constitutively express high levels of the RelB subunit, which promotes their more invasive phenotype via induction of the BCL2 gene. As these cancers are frequently resistant to therapy, here we tested the hypothesis that RelB promotes their survival. High RelB expressing Hs578T and MDA-MB-231 breast cancer cells were more resistant to gamma-radiation than MCF7 and ZR-75 cells, which express lower RelB levels. Knockdown of RelB in Hs578T led to decreased survival in response to gamma-irradiation, while conversely ectopic expression of RelB in MCF7 cells protected these cells from radiation. Similar data were obtained upon treatment of Hs578T or MCF7 cells with the chemotherapeutic agent doxorubicin. High serum levels of 25-hydroxyvitamin D are associated with decreased breast cancer risk and mortality, although, the mechanisms of its protective actions have not been fully elucidated. Treatment of Hs578T and Her-2/neu-driven NF639 cells with 1,25-dihydroxyvitamin D3 decreased RelB/RELB gene expression and levels of pro-survival targets Survivin, MnSOD and Bcl-2, while increasing their sensitivity to gamma-irradiation. Thus, RelB, which promotes survival and a more highly invasive phenotype of breast cancer cells, is a target of 1,25-dihydroxyvitamin D3, providing one mechanism for the observed protective role of 25-hydroxyvitamin D in patients with breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Calcitriol/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Tolerância a Radiação , Radiossensibilizantes/farmacologia , Fator de Transcrição RelB/antagonistas & inibidores , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimioterapia Adjuvante , Relação Dose-Resposta à Radiação , Feminino , Humanos , Proteínas Inibidoras de Apoptose , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Superóxido Dismutase/metabolismo , Survivina , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo , Transfecção
13.
Cancer Res ; 67(12): 5763-70, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17575143

RESUMO

Previously, we showed that the bioactive green tea polyphenol epigallocatechin-3-gallate (EGCG) inhibits growth in soft agar of breast cancer cells with Her-2/neu overexpression. Using gene expression profiling, here we show that EGCG treatment of Her-2/neu-driven mammary tumor cells alters the expression of key regulators in the epithelial to mesenchymal transition (EMT) pathway, reducing invasive phenotype. Specifically, the epithelial genes E-cadherin, gamma-catenin, MTA3, and estrogen receptor alpha (ERalpha) were up-regulated by EGCG, whereas the proinvasive snail gene was down-regulated. Consistently, EGCG inhibited branching colony growth and invasion in Matrigel. EGCG treatment similarly inhibited invasive phenotype of mouse mammary tumor cells driven by Nuclear Factor-kappaB c-Rel and protein kinase CK2, frequently found overexpressed in human breast disease. Recently, we identified the Forkhead box O transcription factor FOXO3a as a major transcriptional regulator of ERalpha. Given the pivotal role of ERalpha in preventing EMT, we hypothesized that the activation of FOXO3a by EGCG plays an important role in the observed reversal of invasive phenotype in ERalpha-positive breast cancer cells. EGCG treatment activated FOXO3a. Ectopic expression of a constitutively active FOXO3a overrode transforming growth factor-beta1-mediated invasive phenotype and induced a more epithelial phenotype, which was dependent on ERalpha expression and signaling. Conversely, a dominant negative FOXO3a reduced epithelial phenotype of ERalpha-low breast cancer cells. These results identify, for the first time, a role for FOXO3a in the inhibition of invasive phenotype in breast cancer cells with active ERalpha signaling and elucidate a novel mechanism whereby EGCG represses EMT of breast cancer cells.


Assuntos
Anticarcinógenos/farmacologia , Neoplasias da Mama/patologia , Catequina/análogos & derivados , Receptor alfa de Estrogênio/efeitos dos fármacos , Fatores de Transcrição Forkhead/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Animais , Bebidas , Caderinas/efeitos dos fármacos , Caderinas/genética , Caderinas/metabolismo , Catequina/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Flavonoides/farmacologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Invasividade Neoplásica/genética , Proteínas de Neoplasias/efeitos dos fármacos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenóis/farmacologia , Fenótipo , Polifenóis , Receptor ErbB-2/efeitos dos fármacos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , gama Catenina/efeitos dos fármacos , gama Catenina/genética , gama Catenina/metabolismo
14.
Cancer Res ; 67(19): 9018-23, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909003

RESUMO

Overexpression of the epidermal growth factor receptor family member HER2 is found in approximately 30% of breast cancers and is a target for immunotherapy. Trastuzumab, a humanized monoclonal antibody against HER2, is cytostatic when added alone and highly successful in clinical settings when used in combination with other chemotherapeutic agents. Unfortunately, HER2 tumors in patients develop resistance to trastuzumab or metastasize to the brain, which is inaccessible to antibody therapy. Previously, we showed that the green tea polyphenol epigallocatechin-3 gallate (EGCG) inhibits growth and transformed phenotype of Her-2/neu-driven mouse mammary tumor cells. The different modes of action of EGCG and trastuzumab led us to hypothesize that EGCG will inhibit HER2-driven breast cancer cells resistant to trastuzumab. We studied trastuzumab-resistant BT474 human breast cancer cells, isolated by chronic trastuzumab exposure, and JIMT-1 breast cancer cells, derived from a pleural effusion in a patient who displayed clinical resistance to trastuzumab therapy. EGCG treatment caused a dose-dependent decrease in growth and cellular ATP production, and apoptosis at high concentrations. Akt activity was suppressed by EGCG leading to the induction of FOXO3a and target cyclin-dependent kinase inhibitor p27Kip1 levels. Thus, EGCG in combination with trastuzumab may provide a novel strategy for treatment of HER2-overexpressing breast cancers, given that EGCG can cross the blood-brain barrier.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Catequina/análogos & derivados , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Catequina/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27 , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trastuzumab
15.
Cancer Res ; 67(13): 6278-85, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17616686

RESUMO

The gene encoding lysyl oxidase (LOX) was identified as the ras recision gene (rrg), with the ability to revert Ras-mediated transformation of NIH 3T3 fibroblasts. Mutations in RAS genes have been found in approximately 25% of lung cancers and in 85% of pancreatic cancers. In microarray analysis, these cancers were found to display reduced LOX gene expression. Thus, the ability of the LOX gene to repress the transformed phenotype of these cancer cells was tested. LOX is synthesized as a 50-kDa secreted precursor Pro-LOX that is processed to the 32-kDa active enzyme (LOX) and to an 18-kDa propeptide (LOX-PP). Recently, we mapped the rrg activity of Pro-LOX to the LOX-PP in Ras-transformed NIH 3T3 cells. Ectopic Pro-LOX and LOX-PP expression in H1299 lung cancer cells inhibited growth in soft agar and invasive colony formation in Matrigel and reduced activation of extracellular signal-regulated kinase (ERK) and Akt, with LOX-PP showing substantially higher activity. Similarly, LOX-PP expression in PANC-1 pancreatic cancer cells effectively reduced ERK and Akt activity and inhibited growth in soft agar and ability of these cells to migrate. Nuclear Factor-kappaB (NF-kappaB) and its target gene BCL2, which are overexpressed in 70% to 75% of pancreatic cancers, have recently been implicated in invasive phenotype. LOX-PP substantially reduced NF-kappaB and Bcl-2 levels. Reintroduction of Bcl-2 into PANC-1 or H1299 cells expressing LOX-PP restored the transformed phenotype, suggesting that Bcl-2 is an essential target. Thus, LOX-PP potently inhibits invasive phenotype of lung and pancreatic cancer cells, suggesting potential therapeutic applications in treatment of these cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Linhagem Celular Tumoral , Colágeno/química , Combinação de Medicamentos , Genes Supressores de Tumor , Humanos , Laminina/química , Camundongos , NF-kappa B/metabolismo , Células NIH 3T3 , Fenótipo , Proteoglicanas/química , Transdução de Sinais
16.
Cancer Res ; 67(3): 1105-12, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17283144

RESUMO

Expression of the lysyl oxidase gene (LOX) was found to inhibit the transforming activity of the ras oncogene in NIH 3T3 fibroblasts and was hence named the ras recision gene (rrg). Lysyl oxidase (LOX) is synthesized and secreted as a 50-kDa inactive proenzyme (Pro-LOX), which is processed by proteolytic cleavage to a functional 32-kDa enzyme and an 18-kDa propeptide (LOX-PP). Recently, the ras recision activity of the LOX gene in NIH 3T3 cells was mapped to its propeptide region. Here, we show for the first time that LOX-PP inhibits transformation of breast cancer cells driven by Her-2/neu, an upstream activator of Ras. LOX-PP expression in Her-2/neu-driven breast cancer cells in culture suppressed Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB activation. Her-2/neu-induced epithelial to mesenchymal transition was reverted by LOX-PP, as judged by reduced levels of Snail and vimentin; up-regulation of E-cadherin, gamma-catenin, and estrogen receptor alpha; and decreased ability to migrate or to form branching colonies in Matrigel. Furthermore, LOX-PP inhibited Her-2/neu tumor formation in a nude mouse xenograft model. Thus, LOX-PP inhibits signaling cascades induced by Her-2/neu that promote a more invasive phenotype and may provide a novel avenue for treatment of Her-2/neu-driven breast carcinomas.


Assuntos
Precursores Enzimáticos/metabolismo , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Receptor ErbB-2/metabolismo , Animais , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Camundongos , Células NIH 3T3 , Fenótipo , Transdução de Sinais
17.
J Cell Biochem ; 104(3): 733-44, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18253935

RESUMO

During progression of an in situ to an invasive cancer, epithelial cells lose expression of proteins that promote cell-cell contact, and acquire mesenchymal markers, which promote cell migration and invasion. These events bear extensive similarities to the process of epithelial to mesenchymal transition (EMT), which has been recognized for several decades as critical feature of embryogenesis. The NF-kappaB family of transcription factors plays pivotal roles in both promoting and maintaining an invasive phenotype. After briefly describing the NF-kappaB family and its role in cancer, in this review we will first describe studies elucidating the functions of NF-kappaB in transcription of master regulator genes that repress an epithelial phenotype. In the second half, we discuss the roles of NF-kappaB in control of mesenchymal genes critical for promoting and maintaining an invasive phenotype. Overall, NF-kappaB is identified as a key target in prevention and in the treatment of invasive carcinomas.


Assuntos
Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Mesoderma/patologia , NF-kappa B/metabolismo , Neoplasias/patologia , Animais , Linhagem Celular Transformada , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mesoderma/metabolismo , Invasividade Neoplásica , Fenótipo , Vimentina/metabolismo
18.
J Cell Biochem ; 104(6): 2091-106, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18393360

RESUMO

The p27(Kip1) (p27) cyclin-dependent kinase inhibitor and c-Myc oncoprotein play essential roles in control of cell cycle progression and apoptosis. Induction of p27 (CDKN1B) gene transcription by Forkhead box O proteins such as FOXO3a leads to growth arrest and apoptosis. Previously, we observed that B cell receptor (surface IgM) engagement of WEHI 231 immature B lymphoma cells with an anti-IgM antibody results in activation of FOXO3a, growth arrest and apoptosis. As ectopic c-Myc expression in these cells prevented anti-IgM induction of p27 and cell death, we hypothesized that c-Myc represses FOXO3a-mediated transcription. Here we show that c-Myc inhibits FOXO3a-mediated activation of the p27 promoter in multiple cell lines. The mechanism of this repression was explored using a combination of co-immunoprecipitation, oligonucleotide precipitation, and chromatin immunoprecipitation experiments. The studies demonstrate a functional association of FOXO3a and c-Myc on a proximal Forkhead binding element in the p27 promoter. This association involves the Myc box II domain of c-Myc and the N-terminal DNA-binding portion of FOXO3a. Analysis of publicly available microarray datasets showed an inverse pattern of c-MYC and p27 RNA expression in primary acute myeloid leukemia, prostate cancer and tongue squamous cell carcinoma samples. The inhibition of FOXO3a-mediated activation of the p27 gene by the high aberrant expression of c-Myc in many tumor cells likely contributes to their uncontrolled proliferation and invasive phenotype.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/química , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias/enzimologia , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
J Cell Biochem ; 104(2): 402-17, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18059014

RESUMO

The aryl hydrocarbon receptor (AhR) is a receptor/transcription factor which regulates cytochrome P450 (CYP) gene transcription and which is activated by environmental carcinogens, some of which are associated with increased breast cancer risk. Here, we show that the AhR is over-expressed and constitutively active in human and rodent mammary tumors, suggesting its ongoing contribution to tumorigenesis regardless of tumor etiology. AhR regulation of CYP1A1 and CYP1B1 was studied to determine if constitutively active AhR effects the same transcriptional outcomes as environmental chemical-activated AhR. Elevated AhR and CYP1B1 but not CYP1A1 before tumor formation in a rat model of mammary tumorigenesis suggested differential CYP1B1 regulation by a constitutively active AhR. This hypothesis was tested with human mammary gland cell lines which hyper-express AhR and CYP1B1 but which express little or no CYP1A1. CYP1B1 expression was diminished by repression of AhR activity or by AhR knockdown, demonstrating AhR control of basal CYP1B1 levels. ChIP assays demonstrated constitutive AhR binding to both CYP1A1 and CYP1B1 promoters, demonstrating that differential CYP1A1 and CYP1B1 regulation by constitutively active AhR does not result from different amounts of promoter-bound AhR. While increasing AhR binding to both CYP1A1 and CYP1B1, 2,3,7,8-tetrachlorodibenzo-p-dioxin induced CYP1A1 mRNA in both a malignant and non-malignant line but increased only CYP1B1 mRNA in the malignant line, again demonstrating that the level of promoter binding does not necessarily correlate with gene mRNA levels. These studies suggest that constitutively active AhR mediates different molecular outcomes than environmental chemical-activated AhR, and further implicate the AhR in mammary tumorigenesis.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Neoplasias da Mama/etiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/etiologia , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1 , Humanos , Neoplasias Mamárias Animais/patologia , Lesões Pré-Cancerosas , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Ratos
20.
Mol Cell Biol ; 25(22): 10136-47, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16260626

RESUMO

Classical NF-kappaB (p65/p50) transcription factors display dynamic induction in the mammary gland during pregnancy. To further elucidate the role of NF-kappaB factors in breast development, we generated a transgenic mouse expressing the IkappaB-alpha S32/36A superrepressor (SR) protein under control of the mouse mammary tumor virus (MMTV) long terminal repeat promoter. A transient delay in mammary ductal branching was observed in MMTV-SR-IkappaB-alpha mice early during pregnancy at day 5.5 (d5.5) and d7.5; however, development recovered by mid- to late pregnancy (d14.5). Recovery correlated with induction of nuclear cyclin D1 and RelB/p52 NF-kappaB complexes. RelB/p52 complexes induced cyclin D1 and c-myc promoter activities and failed in electrophoretic mobility shift assay to interact with IkappaB-alpha-glutathione S-transferase, indicating that their weak interaction with IkappaB-alpha can account for the observed recovery of mammary gland development. Activation of IKKalpha and NF-kappaB-inducing kinase was detected by d5.5, implicating the alternative NF-kappaB signaling pathway in RelB/p52 induction. Constitutively active IKKalpha induced p52, RelB, and cyclin D1 in untransformed mammary epithelial cells. Moreover, mouse mammary tumors induced by 7,12-dimethylbenz(a)anthracene treatment displayed increased RelB/p52 activity. Inhibition of RelB in breast cancer cells repressed cyclin D1 and c-Myc levels and growth in soft agar. These results implicate RelB/p52 complexes in mammary gland development and carcinogenesis.


Assuntos
Proteínas I-kappa B/biossíntese , Glândulas Mamárias Animais/embriologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Subunidade p52 de NF-kappa B/fisiologia , Fator de Transcrição RelB/fisiologia , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Ágar/química , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ciclina D1/metabolismo , Feminino , Glutationa Transferase/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Immunoblotting , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/induzido quimicamente , Camundongos , Camundongos Transgênicos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/química , Fenótipo , Gravidez , Prenhez , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA/metabolismo , Fatores de Tempo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/química , Transfecção , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA