Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(5): 978-984, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193854

RESUMO

Innovation in the molecular structure of surfactants is important for the preparation of soft materials with novel properties. In this study, we synthesized a cationic surfactant, N1,N1,N1,N1,N3,N3,N3-pentamethyl-N3-(3-stearamidopropyl)propane-1,3-diammonium bromide, hereafter referred to as C18-DQA. Unlike conventional cationic surfactants, C18-DQA contains two quaternary ammonium head groups and a long-saturated alkyl chain equal to a chain length of 21 carbon atoms. C18-DQA exhibits a low Krafft point of ∼0 °C and a water solubility >1000 mM at 25 °C. The critical micelle concentration (cmc) of C18-DQA was determined to be 0.59 mM using the Nile red method. C18-DQA was mixed with sodium laurate (SL) at different molar ratios to produce transparent solutions with excellent viscoelasticity over a wide concentration range. The 1 : 1.5 molar ratio C18-DQA/SL mixed solutions exhibited gel-like behavior for a total surfactant concentration of 2.88 wt% (75 mM). The solution with a total surfactant concentration of 300 mM (120 mM C18-DQA and 180 mM SL) achieved a maximum zero-shear viscosity (η0) of 4224 Pa s. Cryogenic transmission electron microscopy analysis revealed the formation of extremely long wormlike micelles, with a cross-sectional diameter of 5 nm and contour length >3 µm, in the mixed solutions. C18-DQA and SL molecules were drawn close by electrostatic attractions, leading to a suitable molecular geometry for the extensive growth of wormlike micelles. This work will act as an important reference for the future preparation of highly viscoelastic solutions by mixing cationic and anionic surfactants. The proposed system is also expected to have potential applications in cosmetic formulations, home care products, and oilfield fracturing fluids.

2.
Soft Matter ; 20(4): 804-812, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38168697

RESUMO

Innovation in surfactant structures is an effective way to prepare new soft materials with novel applications. In this study, we synthesized a double-tailed surfactant containing two quaternary ammonium head groups (Di-C12-N2). The Di-C12-N2 solution behavior was investigated by surface tension, fluorescence, rheology, and cryo-TEM methods. Although Di-C12-N2 contained a large double-tailed hydrophobic group, the solubility of Di-C12-N2 was ∼90 mmol L-1 at 25 °C with a Krafft temperature of ∼1 °C. The increase in Di-C12-N2 concentration in the solutions led to the formation of various aggregates, including spherical micelles, worm-like micelles, multi-layered vesicles, and a rare type of small toroidal micelles. The two quaternary ammonium head groups in Di-C12-N2 led to strong electrostatic interactions between molecules, which was critical for the formation of toroidal micelles. Moreover, with an added NaCl concentration of 40 mmol L-1, the viscosity of the 5 mmol L-1Di-C12-N2 solution increased by ∼1000 times compared to the pure 5 mmol L-1Di-C12-N2 solution, revealing the high sensitivity of the unique head groups to ionic strength. This study enriches the research on the self-assembly principles of surfactants and brings new potential applications for new soft materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA