Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 5760-5769, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439294

RESUMO

Heme is the prosthetic group for cytochrome that exists in nearly all living organisms and serves as a vital component of human red blood cells (RBCs). Tunable optical nonlinearity in suspensions of RBCs has been demonstrated previously, however, the nonlinear optical response of a pure heme (without membrane structure) solution has not been studied to our knowledge. In this work, we show optical nonlinearity in two common kinds of heme (i.e., hemin and hematin) solutions by a series of experiments and numerical simulations. We find that the mechanism of nonlinearity in heme solutions is distinct from that observed in the RBC suspensions where the nonlinearity can be easily tuned through optical power, concentration, and the solution properties. In particular, we observe an unusual phenomenon wherein the heme solution exhibits negative optical nonlinearity and render self-collimation of a focused beam at specific optical powers, enabling shape-preserving propagation of light to long distances. Our results may have potential applications in optical imaging and medical diagnosis through blood.


Assuntos
Eritrócitos , Heme , Humanos , Imagem Óptica
2.
Opt Lett ; 48(22): 5947-5950, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966759

RESUMO

We demonstrate multiple flatbands and compact localized states (CLSs) in a photonic super-Kagome lattice (SKL) that exhibits coexistence of singular and nonsingular flatbands within its unique band structure. Specifically, we find that the upper two flatbands of an SKL are singular-characterized by singularities due to band touching with their neighboring dispersive bands at the Brillouin zone center. Conversely, the lower three degenerate flatbands are nonsingular and remain spectrally isolated from other dispersive bands. The existence of such two distinct types of flatbands is experimentally demonstrated by observing stable evolution of the CLSs with various geometrical shapes in a laser-written SKL. We also discuss the classification of the flatbands in momentum space, using band-touching singularities of the Bloch wave functions. Furthermore, we validate this classification in real space based on unit cell occupancy of the CLSs in a single SKL plaquette. These results may provide insights for the study of flatband transport, dynamics, and nontrivial topological phenomena in other relevant systems.

3.
Phys Rev Lett ; 131(1): 013804, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478443

RESUMO

Cutting a honeycomb lattice (HCL) ends up with three types of edges (zigzag, bearded, and armchair), as is well known in the study of graphene edge states. Here, we propose and demonstrate a distinctive twig-shaped edge, thereby observing new edge states using a photonic platform. Our main findings are (i) the twig edge is a generic type of HCL edge complementary to the armchair edge, formed by choosing the right primitive cell rather than simple lattice cutting or Klein edge modification; (ii) the twig edge states form a complete flat band across the Brillouin zone with zero-energy degeneracy, characterized by nontrivial topological winding of the lattice Hamiltonian; (iii) the twig edge states can be elongated or compactly localized at the boundary, manifesting both flat band and topological features. Although realized here in a photonic graphene, such twig edge states should exist in other synthetic HCL structures. Moreover, our results may broaden the understanding of graphene edge states, as well as new avenues for realization of robust edge localization and nontrivial topological phases based on Dirac-like materials.

4.
Opt Express ; 29(13): 19531-19539, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266062

RESUMO

In this work, we study topological edge and corner states in two-dimensional (2D) Su-Schrieffer-Heeger lattices from designer surface plasmon crystals (DSPCs), where the vertical confinement of the designer surface plasmons enables signal detection without the need of additional covers for the sample. In particular, the formation of higher-order topological insulator can be determined by the two-dimensional Zak phase, and the zero-dimensional subwavelength corner states are found in the designed DSPCs at the terahertz (THz) frequency band together with the edge states. Moreover, the corner state frequency can be tuned by modifying the defect strength, i.e., the location or diameter of the corner pillars. This work may provide a new approach for confining THz waves in DSPCs, which is promising for the development of THz topological photonic integrated devices with high compactness, robustness and tunability.

5.
Phys Rev Lett ; 127(18): 184101, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767391

RESUMO

We demonstrate dynamical topological phase transitions in evolving Su-Schrieffer-Heeger lattices made of interacting soliton arrays, which are entirely driven by nonlinearity and thereby exemplify an emergent nonlinear topological phenomenon. The phase transitions occur from the topologically trivial-to-nontrivial phase in periodic succession with crossovers from the topologically nontrivial-to-trivial regime. The signature of phase transition is the gap-closing and reopening point, where two extended states are pulled from the bands into the gap to become localized topological edge states. Crossovers occur via decoupling of the edge states from the bulk of the lattice.

6.
Opt Lett ; 45(23): 6466-6469, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258838

RESUMO

We study both theoretically and experimentally the effect of nonlinearity on topologically protected linear interface modes in a photonic Su-Schrieffer-Heeger (SSH) lattice. It is shown that under either focusing or defocusing nonlinearity, this linear topological mode of the SSH lattice turns into a family of topological gap solitons. These solitons are stable. However, they exhibit only a low amplitude and power and are thus weakly nonlinear, even when the bandgap of the SSH lattice is wide. As a consequence, if the initial beam has modest or high power, it will either delocalize, or evolve into a soliton not belonging to the family of topological gap solitons. These theoretical predictions are observed in our experiments with optically induced SSH-type photorefractive lattices.

7.
Phys Rev Lett ; 124(18): 183901, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441985

RESUMO

Topological properties of lattices are typically revealed in momentum space using concepts such as the Chern number. Here, we study unconventional loop states, namely, the noncontractible loop states (NLSs) and robust boundary modes, mediated by nontrivial topology in real space. While such states play a key role in understanding fundamental physics of flatband systems, their experimental observation has been hampered because of the challenge in realizing desired boundary conditions. Using a laser-writing technique, we optically establish photonic kagome lattices with both an open boundary by properly truncating the lattice, and a periodic boundary by shaping the lattice into a Corbino geometry. We thereby demonstrate the robust boundary modes winding around the entire edge of the open lattice and, more directly, the NLSs winding in a closed loop akin to that in a torus. We prove that the NLSs due to real-space topology persist in ideal Corbino-shaped kagome lattices of arbitrary size. Our results could be of great importance for our understanding of the singular flatbands and the intriguing physics phenomenon applicable for strongly interacting systems.

8.
Opt Lett ; 44(13): 3342-3345, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259956

RESUMO

We investigate Rabi-like oscillations of topological valley Hall edge states by introducing two zigzag domain walls in an inversion-symmetry-breaking honeycomb photonic lattice. Such resonant oscillations are stimulated by weak periodic modulation of the lattice depth along the propagation direction that does not affect the overall symmetry and the band topology of the lattice. Oscillations are accompanied by periodic switching between edge states with the same Bloch momentum but located at different domain walls. Switching period and efficiency are the non-monotonic functions of the Bloch momentum in the Brillouin zone. We discuss how the efficiency of this resonant process depends on the detuning of modulation frequency from the resonant value. Switching of nonlinear edge states is also briefly discussed. Our work brings about an effective approach to accomplish resonant oscillations of the valley Hall edge states in time-reversal-invariant topological insulators.

9.
Phys Rev Lett ; 122(12): 123903, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978034

RESUMO

We demonstrate valley-dependent vortex generation in photonic graphene. Without breaking inversion symmetry, the excitation of two valleys leads to the formation of an optical vortex upon Bragg reflection to the third equivalent valley, with its chirality determined by the valley degree of freedom. Vortex-antivortex pairs with valley-dependent topological charge flipping are also observed and corroborated by numerical simulations. Furthermore, we develop a three-band effective Hamiltonian model to describe the dynamics of the coupled valleys and find that the commonly used two-band model is not sufficient to explain the observed vortex degeneracy lifting. Such valley-polarized vortex states arise from high-band excitation without a synthetic-field-induced gap opening. Our results from a photonic setting may provide insight for the study of valley contrasting and Berry-phase-mediated topological phenomena in other systems.

10.
Opt Lett ; 43(1): 118-121, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328209

RESUMO

We experimentally and theoretically demonstrate a spatial diametric drive acceleration of two mutually incoherent optical beams in 1D optical lattices under a self-defocusing nonlinearity. The two beams, exciting the modes at the top/bottom edges of the first Bloch band and hence experiencing normal/anomalous diffraction, can bind together and bend in the same direction during nonlinear propagation, analogous to the interplay between two objects with opposite signs of mass that breaks Newton's third law. Their spatial spectrum changes associated with the acceleration are analyzed for different lattice modulations. We find that the acceleration limit is determined by the beam exciting the top band edge that reaches a saturated momentum change prior to the other pairing beam.

11.
Phys Rev Lett ; 121(3): 033904, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085826

RESUMO

We demonstrate intervalley Bloch oscillation (BO) and Landau-Zener tunneling (LZT) in an optically induced honeycomb lattice with a refractive-index gradient. Unlike previously observed BO in a gapped square lattice, we show nonadiabatic beam dynamics that are highly sensitive to the direction of the index gradient and the choice of the Dirac cones. In particular, a symmetry-preserving potential leads to nearly perfect LZT and coherent BO between the inequivalent valleys, whereas a symmetry-breaking potential generates asymmetric scattering, imperfect LZT, and valley-sensitive generation of vortices mediated by a pseudospin imbalance. This clearly indicates that, near the Dirac points, the transverse gradient does not always act as a simple scalar force, as commonly assumed, and the LZT probability is strongly affected by the sublattice symmetry as analyzed from an effective Landau-Zener Hamiltonian. Our results illustrate the anisotropic response of an otherwise isotropic Dirac platform to real-space potentials acting as strong driving fields, which may be useful for manipulation of pseudospin and valley degrees of freedom in graphenelike systems.

12.
Phys Rev Lett ; 121(26): 263902, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636121

RESUMO

Flatband systems typically host "compact localized states" (CLS) due to destructive interference and macroscopic degeneracy of Bloch wave functions associated with a dispersionless energy band. Using a photonic Lieb lattice (LL), such conventional localized flatband states are found to be inherently incomplete, with the missing modes manifested as extended line states that form noncontractible loops winding around the entire lattice. Experimentally, we develop a continuous-wave laser writing technique to establish a finite-sized photonic LL with specially tailored boundaries and, thereby, directly observe the unusually extended flatband line states. Such unconventional line states cannot be expressed as a linear combination of the previously observed boundary-independent bulk CLS but rather arise from the nontrivial real-space topology. The robustness of the line states to imperfect excitation conditions is discussed, and their potential applications are illustrated.

13.
Opt Express ; 24(8): 8877-85, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137320

RESUMO

We report the first experimental demonstration of localized flat-band states in optically induced Kagome photonic lattices. Such lattices exhibit a unique band structure with the lowest band being completely flat (diffractionless) in the tight-binding approximation. By taking the advantage of linear superposition of the flat-band eigenmodes of the Kagome lattices, we demonstrate a high-fidelity transmission of complex patterns in such two-dimensional pyrochlore-like photonic structures. Our numerical simulations find good agreement with experimental observations, upholding the belief that flat-band lattices can support distortion-free image transmission.

14.
Opt Lett ; 41(7): 1435-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192255

RESUMO

We present a simple, yet effective, approach for optical induction of Lieb photonic lattices, which typically rely on the femtosecond laser writing technique. Such lattices are established by judiciously overlapping two sublattices (an "egg-crate" lattice and a square lattice) with different periodicities through a self-defocusing photorefractive medium. Furthermore, taking advantage of the superposition of localized flat-band states inherent in the Lieb lattices, we demonstrate distortion-free image transmission in such two-dimensional perovskite-like photonic structures. Our experimental observations find good agreement with numerical simulations.

15.
Nat Mater ; 13(1): 57-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24193661

RESUMO

Graphene, a two-dimensional honeycomb lattice of carbon atoms, has been attracting much interest in recent years. Electrons therein behave as massless relativistic particles, giving rise to strikingly unconventional phenomena. Graphene edge states are essential for understanding the electronic properties of this material. However, the coarse or impure nature of the graphene edges hampers the ability to directly probe the edge states. Perhaps the best example is given by the edge states on the bearded edge that have never been observed-because such an edge is unstable in graphene. Here, we use the optical equivalent of graphene-a photonic honeycomb lattice-to study the edge states and their properties. We directly image the edge states on both the zigzag and bearded edges of this photonic graphene, measure their dispersion properties, and most importantly, find a new type of edge state: one residing on the bearded edge that has never been predicted or observed. This edge state lies near the Van Hove singularity in the edge band structure and can be classified as a Tamm-like state lacking any surface defect. The mechanism underlying its formation may counterintuitively appear in other crystalline systems.

16.
Opt Express ; 23(4): 4397-405, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836476

RESUMO

We demonstrate self-trapping and rotation of higher-band dipole and quadruple-like gap solitons by single-site excitation in a two-dimensional square photonic lattice under self-focusing nonlinearity. Experimental results show that the second-band dipole gap solitons reside in the first photonic (Bragg reflection) gap, whereas the quadruple-like gap solitons are formed in an even higher photonic gap, resulting from modes of the third-band. Moreover, both dipole and quadruple-like gap solitons exhibit dynamical rotation around the lattice principle axes and the direction of rotation is changing periodically during propagation, provided that they are excited under appropriate initial conditions. In the latter case, the nonlinear rotation is accompanied by periodic transitions between quadruple and doubly-charged vortex states. Our numerical simulations find good agreement with the experimental observations.

17.
Opt Lett ; 40(23): 5686-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625082

RESUMO

We propose and demonstrate an approach for image signal transmission based on self-accelerating Airy beams. The spatial information is encoded in the Fourier space through a 4-f telescope system, which can circumvent obstacles to realize a self-bending signal transmission. Furthermore, the information can be retrieved from the Airy beams after propagation through a disordered scattering medium. Our experimental results agree well with theoretical predictions.

18.
J Opt Soc Am A Opt Image Sci Vis ; 31(7): 1468-72, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25121433

RESUMO

We study both numerically and experimentally the acceleration and propagation dynamics of 2D Airy beams with arbitrary initial angles between their "two wings." Our results show that the acceleration of these generalized 2D Airy beams strongly depends on the initial angles and cannot be simply described by the vector superposition principle (except for the normal case of a 90° angle). However, as a result of the "Hyperbolic umbilic" catastrophe (a two-layer caustic), the main lobes of these 2D Airy beams still propagate along parabolic trajectories even though they become highly deformed. Under such conditions, the peak intensity (leading energy flow) of the 2D Airy beams cannot be confined along the main lobe, in contrast to the normal 90° case. Instead, it is found that there are two parabolic trajectories describing the beam propagation: one for the main lobe, and the other for the peak intensity. Both trajectories can be readily controlled by varying the initial wing angle. Due to their self-healing property, these beams tend to evolve into the well-known 1D or 2D Airy patterns after a certain propagation distance. The theoretical analysis corroborates our experimental observations, and explains clearly why the acceleration of deformed Airy beams increases with the opening of the initial wing angle.

19.
Opt Express ; 21(2): 1615-22, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389146

RESUMO

We report the first experimental demonstration of the so-called three-Airy beams. Such beams represent a two-dimensional field that is a product (rather than simple superposition) of three Airy beams. Our experiments show that, in contrast to conventional Airy beams, this new family of Airy beams can be realized even without the use of truncation by finite apertures. Furthermore, we study linear and nonlinear propagation of the three-Airy beams in a photorefractive medium. It is found that a three-Airy beam tends to linearly diffract into a super-Gaussian-like beam, while under nonlinear propagation it either turns into three intensity spots with a self-defocusing nonlinearity or evolves into a self-trapped channel with a self-focusing nonlinearity.


Assuntos
Luz , Modelos Lineares , Modelos Teóricos , Dinâmica não Linear , Refratometria/métodos , Espalhamento de Radiação , Simulação por Computador
20.
Phys Rev Lett ; 111(10): 103901, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166669

RESUMO

We experimentally demonstrate a topological transition of classical light in "photonic graphene": an array of waveguides arranged in the honeycomb geometry. As the system is uniaxially strained (compressed), the two unique Dirac points (present in the spectrum of conventional graphene) merge and annihilate each other, and a band gap forms. As a result, edge states are created on the zigzag edge and destroyed on the bearded edge. These results are applicable for any 2D honeycomb-type structure, from carbon-based graphene to photonic lattices and crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA