Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 726: 150280, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38909534

RESUMO

Esophageal epithelium is one of the most proliferative and regenerative epithelia in our body, indicating robust stem cell activity. However, the underlying mechanisms regulating the self-renewal and differentiation of esophageal stem cells need to be more elucidated. Here, we identify the role of YAP1 in esophageal stem cells. YAP1 is differentially expressed in the nuclei of esophageal basal cells. Furthermore, the treatment of verteporfin, a YAP1 inhibitor, interfered with esophageal organoid formation. Consistently, YAP1 deletion decreased esophageal organoid formation and the expression of basal genes while increasing the expression of suprabasal genes. Finally, global transcriptomic analysis revealed that YAP1 inhibition induced a significant enrichment of gene sets related to keratinization and cornification, while depleting gene sets related to DNA repair and chromosome maintenance. Our data uncover a novel regulatory mechanism for esophageal stem cells, which could provide a potential strategy for esophageal regenerative medicine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Autorrenovação Celular , Esôfago , Células-Tronco , Proteínas de Sinalização YAP , Proteínas de Sinalização YAP/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Esôfago/citologia , Esôfago/metabolismo , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Humanos , Organoides/metabolismo , Organoides/citologia
2.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269643

RESUMO

Membrane-less biomolecular compartmentalization is a core phenomenon involved in many physiological activities that occur ubiquitously in cells. Condensates, such as promyelocytic leukemia (PML) bodies, stress granules, and P-bodies (PBs), have been investigated to understand the process of membrane-less cellular compartmentalization. In budding yeast, PBs dispersed in the cytoplasm of exponentially growing cells rapidly accumulate in response to various stresses such as osmotic stress, glucose deficiency, and heat stress. In addition, cells start to accumulate PBs chronically in post-exponential phases. Specific protein-protein interactions are involved in accelerating PB accumulation in each circumstance, and discovering the regulatory mechanism for each is the key to understanding cellular condensation. Here, we demonstrate that Nst1 of budding yeast Saccharomyces cerevisiae is far more densely associated with PBs in post-exponentially growing phases from the diauxic shift to the stationary phase than during glucose deprivation of exponentially growing cells, while the PB marker Dcp2 exhibits a similar degree of condensation under these conditions. Similar to Edc3, ectopic Nst1 overexpression induces self-condensation and the condensation of other PB components, such as Dcp2 and Dhh1, which exhibit liquid-like properties. Altogether, these results suggest that Nst1 has the intrinsic potential for self-condensation and the condensation of other PB components, specifically in post-exponential phases.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoplasma , RNA Helicases DEAD-box , Glucose , Corpos de Processamento , Proteínas de Saccharomyces cerevisiae/genética
3.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806385

RESUMO

The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid-liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence elements, such as poly-Q, low-complexity regions, oligomerizing domains, and RNA-binding domains, have been evaluated to understand their roles in biomolecular condensation processes. However, the underlying mechanisms remain unclear. We analyzed Nst1, a PB-associated protein that can intrinsically induce PB component condensations when overexpressed. Various Nst1 domain deletion mutants with unique sequence distributions, including intrinsically disordered regions (IDRs) and aggregation-prone regions, were constructed based on structural predictions. The overexpression of Nst1 deletion mutants lacking the aggregation-prone domain (APD) significantly inhibited self-condensation, implicating APD as an oligomerizing domain promoting self-condensation. Remarkably, cells overexpressing the Nst1 deletion mutant of the polyampholyte domain (PD) in the IDR region (Nst1∆PD) rarely accumulate endogenous enhanced green fluorescent protein (EGFP)-tagged Dcp2. However, Nst1∆PD formed self-condensates, suggesting that Nst1 requires PD to interact with Dcp2, regardless of its self-condensation. In Nst1∆PD-overexpressing cells treated with cycloheximide (CHX), Dcp2, Xrn1, Dhh1, and Edc3 had significantly diminished condensation compared to those in CHX-treated Nst1-overexpressing cells. These observations suggest that the PD of the IDR in Nst1 functions as a hub domain interacting with other PB components.


Assuntos
Corpos de Processamento , Proteínas de Saccharomyces cerevisiae , Cicloeximida/farmacologia , Grânulos Citoplasmáticos/metabolismo , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074016

RESUMO

Cold atmospheric pressure plasma (CAP) and plasma-activated medium (PAM) induce cell death in diverse cancer cells and may function as powerful anti-cancer agents. The main components responsible for the selective anti-cancer effects of CAP and PAM remain elusive. CAP or PAM induces selective cell death in hepatocellular carcinoma cell lines Hep3B and Huh7 containing populations with cancer stem cell markers. Here, we investigated the major component(s) of CAP and PAM for mediating the selective anti-proliferative effect on Hep3B and Huh7 cells. The anti-proliferative effect of CAP was mediated through the medium; however, the reactive oxygen species scavenger N-acetyl cysteine did not suppress PAM-induced cell death. Neither high concentrations of nitrite or nitrite/nitrate nor a low concentration of H2O2 present in the PAM containing sodium pyruvate affected the viability of Hep3B and Huh7 cells. Inhibitors of singlet oxygen, superoxide anions, and nitric oxide retained the capacity of PAM to induce anti-cancer effects. The anti-cancer effect was largely blocked in the PAM prepared by placing an aluminum metal mesh, but not a dielectric PVC mesh, between the plasma source and the medium. Hence, singlet oxygen, hydrogen peroxide, nitric oxide, and nitrite/nitrate are not the main factors responsible for PAM-mediated selective death in Hep3B and Huh7 cells. Other factors, such as charged particles including various ions in CAP and PAM, may induce selective anti-cancer effects in certain cancer cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Radicais Livres/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Nitratos/farmacologia , Nitritos/farmacologia , Gases em Plasma/farmacologia , Acetilcisteína/farmacologia , Alumínio/farmacologia , Pressão Atmosférica , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo
5.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921230

RESUMO

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Meios de Cultura/efeitos da radiação , Neoplasias Hepáticas/tratamento farmacológico , Gases em Plasma , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Linhagem Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Meios de Cultura/farmacologia , Doxorrubicina/farmacologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação
6.
J Cell Biochem ; 119(2): 2381-2395, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28885720

RESUMO

Stathmin/oncoprotein18 regulates microtubule dynamics and participates in mitotic entry and exit. We isolated stathmin as a physically interacting partner of KIFC1, a minus-end-directed kinesin functioning in bipolar spindle formation and maintenance. We found that stathmin depletion leads to multipolar spindle formation in IMR-90 normal human fibroblasts. Stathmin-depleted IMR-90 cells showed early mitotic delay but managed to undergo chromosome segregation by forming multiple poles or pseudo-bipoles. Consistent with these observations, lagging chromosomes, and micronuclei were elevated in stathmin-depleted IMR-90 cells, demonstrating that stathmin is essential for maintaining genomic stability during mitosis in human cells. Genomic instability induced by stathmin depletion led to premature senescence without any indication of cell death in normal IMR-90 cells. Double knock-down of both stathmin and p53 also did not induce cell death in IMR-90 cells, while the stathmin knock-down triggered apoptosis in p53-proficient human lung adenocarcinoma cells. Our results suggest that stathmin is essential in bipolar spindle formation to maintain genomic stability during mitosis, and the depletion of stathmin prevents the initiation of chromosome instability by inducing senescence in human normal fibroblasts.


Assuntos
Fibroblastos/citologia , Técnicas de Silenciamento de Genes , Instabilidade Genômica , Cinesinas/metabolismo , Estatmina/genética , Estatmina/metabolismo , Células A549 , Linhagem Celular , Senescência Celular , Fibroblastos/metabolismo , Células HeLa , Humanos , Centro Organizador dos Microtúbulos/metabolismo , Mitose , Polos do Fuso/genética , Polos do Fuso/metabolismo
7.
PLoS Genet ; 8(1): e1002450, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253605

RESUMO

In budding yeast, the major regulator of the mitotic exit network (MEN) is Tem1, a GTPase, which is inhibited by the GTPase-activating protein (GAP), Bfa1/Bub2. Asymmetric Bfa1 localization to the bud-directed spindle pole body (SPB) during metaphase also controls mitotic exit, but the molecular mechanism and function of this localization are not well understood, particularly in unperturbed cells. We identified four novel Cdc5 target residues within the Bfa1 C-terminus: (452)S, (453)S, (454)S, and (559)S. A Bfa1 mutant in which all of these residues had been changed to alanine (Bfa1(4A)) persisted on both SPBs at anaphase and was hypo-phosphorylated, despite retaining its GAP activity for Tem1. A Bfa1 phospho-mimetic mutant in which all of these residues were switched to aspartate (Bfa1(4D)) always localized asymmetrically to the SPB. These observations demonstrate that asymmetric localization of Bfa1 is tightly linked to its Cdc5-dependent phosphorylation, but not to its GAP activity. Consistent with this, in kinase-defective cdc5-2 cells Bfa1 was not phosphorylated and localized to both SPBs, whereas Bfa1(4D) was asymmetrically localized. BFA1(4A) cells progressed through anaphase normally but displayed delayed mitotic exit in unperturbed cell cycles, while BFA1(4D) cells underwent mitotic exit with the same kinetics as wild-type cells. We suggest that Cdc5 induces the asymmetric distribution of Bfa1 to the bud-directed SPB independently of Bfa1 GAP activity at anaphase and that Bfa1 asymmetry fine-tunes the timing of MEN activation in unperturbed cell cycles.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Mitose/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fuso Acromático/genética , Alanina/genética , Anáfase/genética , Ácido Aspártico/genética , Ciclo Celular/genética , Proteínas Ativadoras de GTPase/genética , Metáfase/genética , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas/genética , Saccharomyces cerevisiae/citologia , Serina/genética
8.
Molecules ; 20(3): 4124-35, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25749681

RESUMO

The present study describes the preparation and evaluation of a poloxamer 407 (P407)-based thermoreversible gel using Carbopol 934P (C934P) as a mucoadhesive polymer and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) for enhancing the aqueous solubility and intranasal absorption of fexofenadine hydrochloride (FXD HCl). The prepared gels were characterized by gelation temperature, viscoelasticity, and drug release profile. Thermoreversibility of P407/C934P gel was demonstrated by rheological studies. The incorporation of carbopol into P407 gel also reduced the amounts of drug released from the gel formulations (p < 0.05). In vivo pharmacokinetic results of the prepared gel formulations in rabbits (at 0.5 mg/kg dose) showed that the relative bioavailability of drug from P407/C934P gel was 11.3 and 2.7-fold higher than those of drug solution and P407 gel group, respectively. These findings suggested that developed thermoreversible gels could be used as promising dosage forms to improve intranasal drug absorption.


Assuntos
Acrilatos/química , Sistemas de Liberação de Medicamentos , Géis/química , Antagonistas não Sedativos dos Receptores H1 da Histamina/administração & dosagem , Terfenadina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina , Acrilatos/administração & dosagem , Adesividade , Administração Intranasal , Animais , Disponibilidade Biológica , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Poloxâmero/administração & dosagem , Poloxâmero/química , Coelhos , Reologia , Terfenadina/administração & dosagem , Terfenadina/farmacocinética , Distribuição Tecidual , Viscosidade , beta-Ciclodextrinas/administração & dosagem , beta-Ciclodextrinas/química
9.
PLoS One ; 19(5): e0302936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713716

RESUMO

Long-term evolution (LTE) radiofrequency electromagnetic field (RF-EMF) is widely used in communication technologies. Thus, the influence of RF-EMF on biological systems is a major public concern and its physiological effects remain controversial. In our previous study, we showed that continuous exposure of various human cell types to 1.7 GHz LTE RF-EMF at a specific absorption rate (SAR) of 2 W/Kg for 72 h can induce cellular senescence. To understand the precise cellular effects of LTE RF-EMF, we elaborated the 1.7 GHz RF-EMF cell exposure system used in the previous study by replacing the RF signal generator and developing a software-based feedback system to improve the exposure power stability. This refinement of the 1.7 GHz LTE RF-EMF generator facilitated the automatic regulation of RF-EMF exposure, maintaining target power levels within a 3% range and a constant temperature even during the 72-h-exposure period. With the improved experimental setup, we examined the effect of continuous exposure to 1.7 GHz LTE RF-EMF at up to SAR of 8 W/Kg in human adipose tissue-derived stem cells (ASCs), Huh7, HeLa, and rat B103 cells. Surprisingly, the proliferation of all cell types, which displayed different growth rates, did not change significantly compared with that of the unexposed controls. Also, neither DNA damage nor cell cycle perturbation was observed in the 1.7 GHz LTE RF-EMF-exposed cells. However, when the thermal control system was turned off and the subsequent temperature increase induced by the RF-EMF was not controlled during continuous exposure to SAR of 8 W/Kg LTE RF-EMF, cellular proliferation increased by 35.2% at the maximum. These observations strongly suggest that the cellular effects attributed to 1.7 GHz LTE RF-EMF exposure are primarily due to the induced thermal changes rather than the RF-EMF exposure itself.


Assuntos
Proliferação de Células , Campos Eletromagnéticos , Ondas de Rádio , Humanos , Proliferação de Células/efeitos da radiação , Ratos , Animais , Células HeLa , Temperatura
10.
Cell Struct Funct ; 38(1): 21-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23318213

RESUMO

Kinesin family member C1 (KIFC1) is the only member of the minus-end-directed kinesin-14 family in human cells. In cancer cells, KIFC1 plays an essential role in bipolar spindle formation by clustering the multiple poles during mitosis. However, it has not been clearly demonstrated whether KIFC1 also functions to mediate bipolar spindle formation and to maintain genomic stability in normal cells. In this study, by using human primary lung fibroblast IMR-90 cells, we showed that KIFC1 knock-down with lentiviral KIFC1 shRNA induced 17% of cells with multiple microtubule organizing centers (MTOCs) and delayed cyclin A degradation for more than 2 hr in early mitosis. However, these cells eventually carried out mitosis, resulting in 24% of cells with lagging chromosomes and 9% of cells with micronuclei after mitosis. Karyotyping of KIFC1-depleted IMR-90 cells demonstrated that cells with various abnormal numbers of chromosomes are produced. When IMR-90 cells treated with KIFC1 or the control shRNA for 60 hr were compared, 20% less cells were observed in KIFC1-depleted cells without an obvious immediate cell death. As reported for Mad2 depletion in IMR-90 cells, KIFC1-depleted IMR-90 cells showed typical features of senescence, like senescence-associated (SA) ß-galactosidase expression, when incubated 6 days or more. However, IMR-90 cells knocked down with both KIFC1 and Mad2 underwent apoptosis, suggesting that KIFC1 and Mad2 likely function in different pathways during mitosis. Taken together, we suggest that KIFC1 plays an essential role for bipolar MTOC formation and maintaining chromosomal stability in the mitosis of human primary fibroblast IMR-90.


Assuntos
Instabilidade Cromossômica , Fibroblastos/metabolismo , Cinesinas/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Centro Organizador dos Microtúbulos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Senescência Celular/genética , Ciclina A/metabolismo , Fibroblastos/citologia , Técnicas de Silenciamento de Genes , Humanos , Cinesinas/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Proteínas Mad2 , Mitose , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA